login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165409
Transform of 2^n by the aerated Catalan triangle A165408.
3
1, 2, 4, 10, 24, 56, 136, 328, 784, 1896, 4576, 11008, 26592, 64192, 154752, 373696, 902144, 2176640, 5255424, 12687488, 30621952, 73931392, 178484736, 430845952, 1040176640, 2511199232, 6062209024, 14635617280, 35333443584, 85300015104
OFFSET
0,2
COMMENTS
Hankel transform is A165410.
LINKS
FORMULA
G.f.: 1/(1-2*x-2*x^3*c(2*x^3)) = 2/(1-4*x+sqrt(1-8*x^3)) = (1-4*x-sqrt(1-8*x^3) )/(4*x*(1-2*x-x^2)), c(x) the g.f. of A000108.
G.f.: 1/(1-2*x-2*x^3/(1-2*x^3/(1-2*x^3/(1-2*x^3/(1-... (continued fraction).
a(n) = Sum_{k=0..n} if(n<=3k, 2^k*C((n+k)/2, k)*((3*k-n)/2 + 1)(1+(-1)^(n-k))/(2*(k+1)) = Sum_{k=0..n} 2^k * A165408(n,k).
a(n) = Sum_{k=0..n+1} Pell(n-k+1)*(0^k - 2^((k-2)/2)*A000108((k-2)/3)*(1+2*cos(2*Pi*(k-2)/3))/3).
(n+1)*a(n) = 2(n+1)*a(n-1) + (n+1)*a(n-2) + 4*(2*n-7)*a(n-3) - 8(2*n-7)*a(n-4) - 4*(2*n-7)*a(n-5). - R. J. Mathar, Nov 17 2011
a(n) ~ (4+sqrt(2)) * (1+sqrt(2))^n / 8. - Vaclav Kotesovec, Feb 01 2014
MATHEMATICA
CoefficientList[Series[2/(1-4*x+Sqrt[1-8*x^3]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( 2/(1-4*x+Sqrt(1-8*x^3)) )); // G. C. Greubel, Nov 10 2022
(SageMath)
def A165408(n, k): return 0 if (n>3*k) else (1+(-1)^(n-k))*(3*k-n+2)*binomial(int((n+k)/2), k)/(4*(k+1))
def A165409(n): return sum(2^k*A165408(n, k) for k in range(n+1))
[A165409(n) for n in range(41)] # G. C. Greubel, Nov 10 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 17 2009
STATUS
approved