login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Transform of 2^n by the aerated Catalan triangle A165408.
3

%I #17 Nov 10 2022 17:38:26

%S 1,2,4,10,24,56,136,328,784,1896,4576,11008,26592,64192,154752,373696,

%T 902144,2176640,5255424,12687488,30621952,73931392,178484736,

%U 430845952,1040176640,2511199232,6062209024,14635617280,35333443584,85300015104

%N Transform of 2^n by the aerated Catalan triangle A165408.

%C Hankel transform is A165410.

%H Vincenzo Librandi, <a href="/A165409/b165409.txt">Table of n, a(n) for n = 0..200</a>

%F G.f.: 1/(1-2*x-2*x^3*c(2*x^3)) = 2/(1-4*x+sqrt(1-8*x^3)) = (1-4*x-sqrt(1-8*x^3) )/(4*x*(1-2*x-x^2)), c(x) the g.f. of A000108.

%F G.f.: 1/(1-2*x-2*x^3/(1-2*x^3/(1-2*x^3/(1-2*x^3/(1-... (continued fraction).

%F a(n) = Sum_{k=0..n} if(n<=3k, 2^k*C((n+k)/2, k)*((3*k-n)/2 + 1)(1+(-1)^(n-k))/(2*(k+1)) = Sum_{k=0..n} 2^k * A165408(n,k).

%F a(n) = Sum_{k=0..n+1} Pell(n-k+1)*(0^k - 2^((k-2)/2)*A000108((k-2)/3)*(1+2*cos(2*Pi*(k-2)/3))/3).

%F (n+1)*a(n) = 2(n+1)*a(n-1) + (n+1)*a(n-2) + 4*(2*n-7)*a(n-3) - 8(2*n-7)*a(n-4) - 4*(2*n-7)*a(n-5). - _R. J. Mathar_, Nov 17 2011

%F a(n) ~ (4+sqrt(2)) * (1+sqrt(2))^n / 8. - _Vaclav Kotesovec_, Feb 01 2014

%t CoefficientList[Series[2/(1-4*x+Sqrt[1-8*x^3]), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 01 2014 *)

%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( 2/(1-4*x+Sqrt(1-8*x^3)) )); // _G. C. Greubel_, Nov 10 2022

%o (SageMath)

%o def A165408(n,k): return 0 if (n>3*k) else (1+(-1)^(n-k))*(3*k-n+2)*binomial(int((n+k)/2), k)/(4*(k+1))

%o def A165409(n): return sum(2^k*A165408(n,k) for k in range(n+1))

%o [A165409(n) for n in range(41)] # _G. C. Greubel_, Nov 10 2022

%Y Cf. A000108, A000129, A165408, A165410.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Sep 17 2009