login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052911 Expansion of (1-x)/(1 - 3*x - x^2 + 2*x^3). 4
1, 2, 7, 21, 66, 205, 639, 1990, 6199, 19309, 60146, 187349, 583575, 1817782, 5662223, 17637301, 54938562, 171128541, 533049583, 1660400166, 5171992999, 16110279997, 50182032658, 156312391973, 486898648583, 1516644272406 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 891

Index entries for linear recurrences with constant coefficients, signature (3,1,-2).

FORMULA

G.f.: (1-x)/(1 - 3*x - x^2 + 2*x^3)

a(n) = 3*a(n-1) + a(n-2) - 2*a(n-3).

a(n) = Sum_{alpha=RootOf(1 - 3*z - z^2 + 2*z^3)} (1/229)*(43 + 41*alpha - 46*alpha^2)*alpha^(-1-n).

a(n) = center term in M^n * [1 1 1] where M = Hosoya's triangle considered as an upper triangular 3 X 3 matrix: [2 1 2 / 1 1 0 / 1 0 0]. E.g., a(4) = 66 since M^4 * [1 1 1] = [139 66 45]. The analogous procedure using M^n * [1 0 0] generates A100058. - Gary W. Adamson, Oct 31 2004

a(n) = A100058(n) - A100058(n-1). - R. J. Mathar, May 04 2018

MAPLE

spec := [S, {S=Sequence(Union(Z, Prod(Union(Sequence(Z), Z, Z), Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);

MATHEMATICA

LinearRecurrence[{3, 1, -2}, {1, 2, 7}, 30] (* G. C. Greubel, Oct 15 2019 *)

PROG

(PARI) my(x='x+O('x^30)); Vec((1-x)/(1-3*x-x^2+2*x^3)) \\ G. C. Greubel, Oct 15 2019

(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1-3*x-x^2+2*x^3) )); // G. C. Greubel, Oct 15 2019

(Sage)

def A052911_list(prec):

P.<x> = PowerSeriesRing(ZZ, prec)

return P((1-x)/(1-3*x-x^2+2*x^3)).list()

A052911_list(30) # G. C. Greubel, Oct 15 2019

(GAP) a:=[1, 2, 7];; for n in [4..30] do a[n]:=3*a[n-1]+a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Oct 15 2019

CROSSREFS

Cf. A100058, A058071, A100059.

Sequence in context: A037520 A218836 A331722 * A126133 A344500 A186240

Adjacent sequences: A052908 A052909 A052910 * A052912 A052913 A052914

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

More terms from James A. Sellers, Jun 06 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 04:37 EST 2022. Contains 358431 sequences. (Running on oeis4.)