OFFSET
1,2
COMMENTS
a(n)/a(n-1) tends to 3.11490754148...an eigenvalue of M and a root of the characteristic polynomial x^3 - 3x^2 - x + 2.
REFERENCES
Boris A. Bondarenko, "Generalized Pascal Triangles and Pyramids, Their Fractals, Graphs and Applications"; Fibonacci Association, 1993, p. 27.
LINKS
FORMULA
G.f.: (2*x^2-2*x-1)*x / (-2*x^3+x^2+3*x-1).
Recurrence: a(n) = 3*a(n-1) + a(n-2) - 2*a(n-3).
a(n) = rightmost term in M^5 * [1 1 1], where M = the 3 X 3 upper triangular matrix [2 1 2 / 1 1 0 / 1 0 0].
INVERT transform of (1, 4, 5, 6, 7, 8, 9, ...) with offset 0.
EXAMPLE
a(5) = 139 = rightmost term in M^5 * [1 1 1] which is [434 205 139]. 434 = a(6), while 205 = A052911(5).
a(6) = 434 = 3*a(5) + a(4) - 2*a(3) = 3*139 + 45 - 2*14.
MATHEMATICA
LinearRecurrence[{3, 1, -2}, {1, 5, 14}, 30] (* Harvey P. Dale, Apr 21 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Oct 31 2004
EXTENSIONS
Edited by Ralf Stephan, Nov 02 2004
STATUS
approved