login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302762
Number of minimal total dominating sets in the n-Andrásfai graph.
1
1, 5, 14, 44, 112, 238, 449, 782, 1287, 2030, 3096, 4592, 6650, 9430, 13123, 17954, 24185, 32118, 42098, 54516, 69812, 88478, 111061, 138166, 170459, 208670, 253596, 306104, 367134, 437702, 518903, 611914, 717997, 838502, 974870, 1128636, 1301432, 1494990, 1711145
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Andrásfai Graph
Eric Weisstein's World of Mathematics, Total Dominating Set
FORMULA
a(n) = (-720 + 2732*n - 1880*n^2 + 505*n^3 - 40*n^4 + 3*n^5)/120 for n > 2.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 8.
G.f.: x*(1 - x - x^2 + 15*x^3 - 27*x^4 + 15*x^5 + 2*x^6 - x^7)/(-1 + x)^6.
MATHEMATICA
Join[{1, 5}, Table[(-720 + 2732 n - 1880 n^2 + 505 n^3 - 40 n^4 + 3 n^5)/120, {n, 3, 20}]
Join[{1, 5}, LinearRecurrence[{6, -15, 20, -15, 6, -1}, {14, 44, 112, 238, 449, 7827}, 20]]
CoefficientList[Series[(1 - x - x^2 + 15 x^3 - 27 x^4 + 15 x^5 + 2 x^6 - x^7)/(-1 + x)^6, {x, 0, 20}], x]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Apr 12 2018
EXTENSIONS
a(8)-a(20) from Andrew Howroyd, Apr 15 2018
STATUS
approved