login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213661
Number of dominating subsets of the wheel graph W_n.
2
4, 3, 7, 15, 27, 53, 103, 199, 387, 753, 1467, 2863, 5595, 10949, 21455, 42095, 82691, 162625, 320179, 631031, 1244907, 2458261, 4858487, 9610231, 19024131, 37687153, 74710123, 148198623, 294150331, 584167941, 1160734623, 2307488351, 4589261827
OFFSET
1,1
COMMENTS
a(n) = Sum_{k=1..n} A212635(n,k).
Extended to a(1)-a(3) using the formula/recurrence.
LINKS
S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, arXiv:0905.2251 [math.CO], 2009.
T. Kotek, J. Preen, F. Simon, P. Tittmann, and M. Trinks, Recurrence relations and splitting formulas for the domination polynomial, arXiv:1206.5926 [math.CO], 2012.
Eric Weisstein's World of Mathematics, Dominating Set
Eric Weisstein's World of Mathematics, Wheel Graph
FORMULA
a(n) = a(n-1) + a(n-2) + a(n-3) + 2^(n-4) for n >= 4.
G.f.: x*(4 - 9*x + 2*x^2 + x^3)/(1 - 3*x + x^2 + x^3 + 2*x^4).
a(n) = 2^(n-1) -A000073(n+2)+4*A000073(n+1) -A000073(n). - R. J. Mathar, Jun 29 2012
a(n) = 3*a(n-1) - a(n-2) - a(n-3) - 2*a(n-4). - Eric W. Weisstein, Apr 17 2018
EXAMPLE
a(4)=15 because all nonempty subsets of the wheel W_4 are dominating (2^4 - 1 = 15).
MAPLE
a[4] := 15: a[5] := 27: a[6] := 53: for n from 7 to 42 do a[n] := a[n-1]+a[n-2]+a[n-3]+2^(n-4) end do: seq(a[n], n = 4 .. 40);
MATHEMATICA
LinearRecurrence[{3, -1, -1, -2}, {4, 3, 7, 15}, 40] (* Eric W. Weisstein, Mar 31 2017 *)
Table[2^(n - 1) + RootSum[-1 - # - #^2 + #^3 &, #^n (-1 - # + #1^2) &], {n, 20}] (* Eric W. Weisstein, Apr 17 2018 *)
CoefficientList[Series[(4 - 9 x + 2 x^2 + x^3)/(1 - 3 x + x^2 + x^3 + 2 x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 17 2018 *)
CROSSREFS
Cf. A212635.
Sequence in context: A245300 A228949 A048227 * A176083 A092193 A277117
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jun 29 2012
EXTENSIONS
a(1)-a(3) prepended by Eric W. Weisstein, Apr 17 2018
STATUS
approved