OFFSET
1,1
COMMENTS
Row n contains n + 2 entries.
Sum of entries in row n = A213663(n).
LINKS
S. Alikhani and E. Deutsch, Graphs with domination roots in the right half-plane, arXiv preprint arXiv:1305.3734, 2013
S. Alikhani and Y. H. Peng, Introduction to domination polynomial of a graph, arXiv:0905.2251.
T. Kotek, J. Preen, F. Simon, P. Tittmann, and M. Trinks, Recurrence relations and splitting formulas for the domination polynomial, arXiv:1206.5926.
FORMULA
The generating polynomial g(n) =g(n,x) of row n (= domination polynomial of the graph G(n)) satisfies the recursion relation g(n) = x*g(n-1) + x*g(n-2) + x*g(n-3) + x*(1+x)^(n-2) (n>=4); g(1)=3*x+3*x^2+x^3; g(2)=2*x+6*x^2+4*x^3+x^4; g(3)=x+8*x^2+10*x^3+5*x^4+x^5.
EXAMPLE
Row 1 is 3,3,1 because the graph G(1) is the triangle abc; there are 3 dominating subsets of size 1 ({a}, {b}, {c}), 3 dominating subsets of size 2 ({a,b}, {a,c}, {b,c}), and 1 dominating subset of size 3 ({a,b,c}).
T(n,1)=1 for n>=3 because the common vertex of the n triangles is the only dominating subset of size k=1.
Triangle starts:
3,3,1;
2,6,4,1;
1,8,10,5,1;
1,8,18,15,6,1;
1,7,25,33,21,7,1;
MAPLE
g[1] := 3*x+3*x^2+x^3: g[2] := 2*x+6*x^2+4*x^3+x^4: g[3] := x+8*x^2+10*x^3+5*x^4+x^5: for n from 4 to 22 do g[n] := sort(expand(x*g[n-1]+x*g[n-2]+x*g[n-3]+x*(1+x)^(n-2))) end do: for n to 10 do seq(coeff(g[n], x, k), k = 1 .. n+2) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 29 2012
STATUS
approved