login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215596
Expansion of psi(-x) * f(-x^4)^3 in powers of x where psi(), f() are Ramanujan theta functions.
3
1, -1, 0, -1, -3, 3, 1, 3, 0, 0, -2, 0, 5, -5, -3, -6, 0, 0, 5, 3, 0, -1, 5, 0, -7, 10, 0, 2, 1, 0, -7, 0, -3, -5, -7, 0, 1, 0, 0, 7, 11, -9, 0, -9, 0, 6, 9, 0, 5, 3, 9, 0, -7, 0, 0, -10, 0, -5, 0, 3, -18, 2, 0, 11, 0, 0, -10, -5, 9, 7, -14, 0, 0, 0, 0, 11, 9
OFFSET
0,5
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-5/8) * eta(q) * eta(q^4)^4 / eta(q^2) in powers of q.
Euler transform of period 4 sequence [-1, 0, -1, -4, ...].
a(n) = b(8*n + 5) / (4*i) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = b(p)*b(p^(e-1)) - Kronecker(2, p)*p* b(p^(e-2)).
G.f. is a period 1 Fourier series which satisfies f(-1 / (128 t)) = 2^(9/2) * g(t) where q = exp(2 Pi i t) and g() is the g.f. for A215597.
EXAMPLE
G.f. = 1 - x - x^3 - 3*x^4 + 3*x^5 + x^6 + 3*x^7 - 2*x^10 + 5*x^12 - 5*x^13 + ...
G.f. = q^5 - q^13 - q^29 - 3*q^37 + 3*q^45 + q^53 + 3*q^61 - 2*q^85 + 5*q^101 + ...
MATHEMATICA
A215596[n_] := SeriesCoefficient[(QPochhammer[x]*QPochhammer[x^4]^4)/ QPochhammer[x^2], {x, 0, n}]; Table[A215596[n], {n, 0, 50}] (* G. C. Greubel, Oct 01 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^4 / eta(x^2 + A), n))};
(PARI) {a(n) = my(A, p, e, u, v, s, x, y, a0, a1); if( n<0, 0, n = n*8 + 5; A = factor(n); simplify( 1 / (4*I) * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, s = p * kronecker( 2, p); if( p%4==3, if( e%2, 0, (-s)^(e/2)), if( p%8==1, for( y=1, sqrtint(p\16), if( issquare( p - 16*y^2, &u), v=y; if( u%4!=1, u=-u); break)); a0 = 1; a1 = x = 2 * u * (-1)^(u\4 + v)); if( p%8==5, forstep( y=1, sqrtint(p\4), 2, if( issquare( p - 4*y^2, &v), u=y; if( u%4!=1, u=-u); if( v%4!=1, v=-v); break)); a0 = 1; a1 = x = 4 * I * u * (-1)^(v\4)); for( i=2, e, y = x*a1 - s*a0; a0=a1; a1=y); a1)))))};
CROSSREFS
Cf. A215597.
Sequence in context: A160326 A213662 A213657 * A268676 A354762 A180938
KEYWORD
sign
AUTHOR
Michael Somos, Aug 16 2012
STATUS
approved