The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215595 Number of strings of length n, formed from the 26-letter English alphabet, which contain the substring xy. 1
 0, 0, 1, 52, 2027, 70226, 2280825, 71112600, 2155562551, 64005323902, 1870809923477, 54006556365476, 1543466751232275, 43746473462661450, 1231293799939647601, 34451045198171912752, 959005856055827234927, 26576960554539062120726, 733650711461388661963725 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS G. C. Greubel, Table of n, a(n) for n = 0..700 Index entries for linear recurrences with constant coefficients, signature (52,-677,26). FORMULA a(n) = 26*a(n-1) + 26^(n-2) - a(n-2). a(n) = 52*a(n-1) - 677*a(n-2) + 26*a(n-3). - Charles R Greathouse IV, Aug 16 2012 G.f.: x/(1 - 52*x + 677*x^2 - 26*x^3). - Alexander R. Povolotsky, Aug 16 2012 a(n) = (1/168)*(13 +2*sqrt(42))^(-n)*(-(84+13*sqrt(42))*(13+2*sqrt(42))^(2*n) + 168*(338+52*sqrt(42))^n-84+13*sqrt(42)). - Alexander R. Povolotsky, Aug 16 2012 a(n) = Sum_{j=1..n} (-1)^(j+1) * B(n,j), where B(n,j) is the number of ways to place k occurrences of xy in a string of length n, and then choosing arbitrary letters for the n - 2k remaining positions. B(n,j) = product((n-i),i=j..(2*j-1)) / j! * 26^(n-2*j). EXAMPLE For n = 2, the only such string is xy. For n = 3, there are 26 strings of the form *xy and 26 of the form xy*. For n = 4, there are 26^2 of each of the forms xy**, *xy* and **xy, but we double count xyxy, so the answer for n=4 is 3*26^2 - 1 = 2027. MATHEMATICA Join[{0}, CoefficientList[Series[x/(1 - 52*x + 677*x^2 - 26*x^3), {x, 0, 50}], x]] (* G. C. Greubel, Feb 26 2017 *) PROG (PARI) x='x+O('x^50); concat([0, 0], Vec(x/(1 - 52*x + 677*x^2 - 26*x^3))) \\ G. C. Greubel, Feb 26 2017 CROSSREFS Cf. A186314 (same problem for ternary strings). Sequence in context: A230530 A188389 A169997 * A134552 A004296 A097837 Adjacent sequences:  A215592 A215593 A215594 * A215596 A215597 A215598 KEYWORD nonn,easy AUTHOR David Kofoed Wind, Aug 16 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 22:36 EDT 2020. Contains 337388 sequences. (Running on oeis4.)