OFFSET
0,2
COMMENTS
(7*a(n))^2 - 53*b(n)^2 = -4 with b(n)=A097838(n) gives all positive solutions of this Pell equation.
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..584
Tanya Khovanova, Recursive Sequences
Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
Index entries for linear recurrences with constant coefficients, signature (51,-1).
FORMULA
a(n) = S(n, 51) + S(n-1, 51) = S(2*n, sqrt(53)), with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x) = 0 = U(-1, x). S(n, 51)=A097836(n).
a(n) = (-2/7)*i*((-1)^n)*T(2*n+1, 7*i/2) with the imaginary unit i and Chebyshev's polynomials of the first kind. See the T-triangle A053120.
G.f.: (1+x)/(1-51*x+x^2).
a(n) = 51*a(n-1) - a(n-2); a(0)=1, a(1)=52. - Philippe Deléham, Nov 18 2008
From Peter Bala, Aug 26 2022: (Start)
a(n) = (2/7)*(7/2 o 7/2 o ... o 7/2) (2*n+1 terms), where the binary operation o is defined on real numbers by x o y = x*sqrt(1 + y^2) + y*sqrt(1 + x^2). The operation o is commutative and associative with identity 0.
The aerated sequence (b(n))n>=1 = [1, 0, 52, 0, 2651, 0, 135149, 0, ...], with o.g.f. x*(1 + x^2)/(1 - 51*x^2 + x^4), is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -49, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials.
b(n) = (1/2)*( (-1)^n - 1 )*F(n,7) + (1/7)*( 1 + (-1)^(n+1) )*F(n+1,7), where F(n,x) is the n-th Fibonacci polynomial - see A168561 (but with row indexing starting at n = 1).
Exp( Sum_{n >= 1} 14*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 14*A054413(n)*x^n.
Exp( Sum_{n >= 1} (-14)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 14*A054413(n)*(-x)^n. (End)
EXAMPLE
All positive solutions of Pell equation x^2 - 53*y^2 = -4 are (7=7*1,1), (364=7*52,50), (18557=7*2651,2549), (946043=7*135149,129949), ...
MATHEMATICA
LinearRecurrence[{51, -1}, {1, 52}, 30] (* G. C. Greubel, Jan 12 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1+x)/(1-51*x+x^2)) \\ G. C. Greubel, Jan 12 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)/(1-51*x+x^2) )); // G. C. Greubel, Jan 12 2019
(Sage) ((1+x)/(1-51*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 12 2019
(GAP) a:=[1, 52];; for n in [3..30] do a[n]:=51*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 12 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 10 2004
STATUS
approved