login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097839 Chebyshev polynomials S(n,83). 5
1, 83, 6888, 571621, 47437655, 3936753744, 326703123097, 27112422463307, 2250004361331384, 186723249568041565, 15495779709786118511, 1285962992662679794848, 106719432611292636853873, 8856426943744626179076611, 734976716898192680226504840 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Used for all positive integer solutions of Pell equation x^2 - 85*y^2 = -4. See A097840 with A097841.

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..520

R. Flórez, R. A. Higuita, A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (83, -1).

FORMULA

a(n)= S(n, 83)=U(n, 83/2)= S(2*n+1, sqrt(85))/sqrt(85) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).

a(n)=83*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=83; a(-1):=0.

a(n)=(ap^(n+1) - am^(n+1))/(ap-am) with ap := (83+9*sqrt(85))/2 and am := (83-9*sqrt(85))/2 = 1/ap.

G.f.: 1/(1-83*x+x^2).

MATHEMATICA

CoefficientList[Series[1/(1-83x+x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[ {83, -1}, {1, 83}, 20] (* Harvey P. Dale, Oct 11 2012 *)

CROSSREFS

Sequence in context: A252812 A202657 A180846 * A268987 A087189 A201727

Adjacent sequences:  A097836 A097837 A097838 * A097840 A097841 A097842

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Sep 10 2004

EXTENSIONS

More terms from Harvey P. Dale, Oct 11 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 22 22:05 EDT 2017. Contains 283901 sequences.