This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2017 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097839 Chebyshev polynomials S(n,83). 5
 1, 83, 6888, 571621, 47437655, 3936753744, 326703123097, 27112422463307, 2250004361331384, 186723249568041565, 15495779709786118511, 1285962992662679794848, 106719432611292636853873, 8856426943744626179076611, 734976716898192680226504840 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Used for all positive integer solutions of Pell equation x^2 - 85*y^2 = -4. See A097840 with A097841. LINKS Indranil Ghosh, Table of n, a(n) for n = 0..520 R. Flórez, R. A. Higuita, A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014). Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (83, -1). FORMULA a(n)= S(n, 83)=U(n, 83/2)= S(2*n+1, sqrt(85))/sqrt(85) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x). a(n)=83*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=83; a(-1):=0. a(n)=(ap^(n+1) - am^(n+1))/(ap-am) with ap := (83+9*sqrt(85))/2 and am := (83-9*sqrt(85))/2 = 1/ap. G.f.: 1/(1-83*x+x^2). MATHEMATICA CoefficientList[Series[1/(1-83x+x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[ {83, -1}, {1, 83}, 20] (* Harvey P. Dale, Oct 11 2012 *) CROSSREFS Sequence in context: A252812 A202657 A180846 * A268987 A087189 A201727 Adjacent sequences:  A097836 A097837 A097838 * A097840 A097841 A097842 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Sep 10 2004 EXTENSIONS More terms from Harvey P. Dale, Oct 11 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 17:22 EST 2018. Contains 318023 sequences. (Running on oeis4.)