login
A134552
G.f.: 1/(x^36*p(1/x)), where p(x)=(-1 - x^5 + x^6)^4*(-1 - 2*x^5 + x^6)*(-21 - 46 x^5 + x^6).
0
1, 52, 2414, 111108, 5111131, 235112408, 10815171642, 497497898476, 22884903384541, 1052705558030480, 48424455776753212, 2227524970668044332, 102466148877848717936, 4713442858828497045208, 216818371986693835466062
OFFSET
1,2
COMMENTS
Weighted solution of the following zero sum game:
Ma={{0, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0},
{0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 1, 0},
{0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, a}}; a={1,2};
ML={{0, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0},
{0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 1, 0},
{0, 0, 0, 0, 0, 1}, {21, 0, 0, 0, 0, 46}};
such that 4*Game_value[M1]+Game_value[M2]+Game_Value[ML]=0
FORMULA
G.f.: x/((-1 + x + x^6)^4*(-1 + 2*x + x^6)*(-1 + 46*x + 21*x^6)). - Georg Fischer, Feb 17 2020
MATHEMATICA
f[x_] = (-1 - x^5 + x^6)^4*(-1 - 2*x^5 + x^6)*(-21 - 46 x^5 + x^6); g[x_] = Expand[x^36*f[1/x]]; a = Table[ SeriesCoefficient[Series[1/g[x], {x, 0, 30}], n], {n, 0, 30}] (* or *)
Rest[CoefficientList[Series[x/((-1 + x + x^6)^4*(-1 + 2*x + x^6)*(-1 + 46*x
+ 21 *x^6)), {x, 0 , 14}], x]] // Flatten (* Georg Fischer, Feb 17 2020 *)
CROSSREFS
Sequence in context: A169997 A342898 A215595 * A004296 A097837 A247628
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Jan 31 2008
STATUS
approved