login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A134552 G.f.: 1/(x^36*p(1/x)), where p(x)=(-1 - x^5 + x^6)^4*(-1 - 2*x^5 + x^6)*(-21 - 46 x^5 + x^6). 0
1, 52, 2414, 111108, 5111131, 235112408, 10815171642, 497497898476, 22884903384541, 1052705558030480, 48424455776753212, 2227524970668044332, 102466148877848717936, 4713442858828497045208, 216818371986693835466062 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Weighted solution of the following zero sum game:

Ma={{0, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0},

{0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 1, 0},

{0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, a}}; a={1,2};

ML={{0, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0},

{0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 1, 0},

{0, 0, 0, 0, 0, 1}, {21, 0, 0, 0, 0, 46}};

such that 4*Game_value[M1]+Game_value[M2]+Game_Value[ML]=0

LINKS

Table of n, a(n) for n=1..15.

FORMULA

G.f.: x/((-1 + x + x^6)^4*(-1 + 2*x + x^6)*(-1 + 46*x + 21*x^6)). - Georg Fischer, Feb 17 2020

MATHEMATICA

f[x_] = (-1 - x^5 + x^6)^4*(-1 - 2*x^5 + x^6)*(-21 - 46 x^5 + x^6); g[x_] = Expand[x^36*f[1/x]]; a = Table[ SeriesCoefficient[Series[1/g[x], {x, 0, 30}], n], {n, 0, 30}] (* or *)

Rest[CoefficientList[Series[x/((-1 + x + x^6)^4*(-1 + 2*x + x^6)*(-1 + 46*x

+ 21 *x^6)), {x, 0 , 14}], x]] // Flatten (* Georg Fischer, Feb 17 2020 *)

CROSSREFS

Sequence in context: A188389 A169997 A215595 * A004296 A097837 A247628

Adjacent sequences:  A134549 A134550 A134551 * A134553 A134554 A134555

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula, Jan 31 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 02:49 EDT 2020. Contains 337380 sequences. (Running on oeis4.)