login
G.f.: 1/(x^36*p(1/x)), where p(x)=(-1 - x^5 + x^6)^4*(-1 - 2*x^5 + x^6)*(-21 - 46 x^5 + x^6).
0

%I #6 Feb 17 2020 10:40:19

%S 1,52,2414,111108,5111131,235112408,10815171642,497497898476,

%T 22884903384541,1052705558030480,48424455776753212,

%U 2227524970668044332,102466148877848717936,4713442858828497045208,216818371986693835466062

%N G.f.: 1/(x^36*p(1/x)), where p(x)=(-1 - x^5 + x^6)^4*(-1 - 2*x^5 + x^6)*(-21 - 46 x^5 + x^6).

%C Weighted solution of the following zero sum game:

%C Ma={{0, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0},

%C {0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 1, 0},

%C {0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, a}}; a={1,2};

%C ML={{0, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0},

%C {0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 1, 0},

%C {0, 0, 0, 0, 0, 1}, {21, 0, 0, 0, 0, 46}};

%C such that 4*Game_value[M1]+Game_value[M2]+Game_Value[ML]=0

%F G.f.: x/((-1 + x + x^6)^4*(-1 + 2*x + x^6)*(-1 + 46*x + 21*x^6)). - _Georg Fischer_, Feb 17 2020

%t f[x_] = (-1 - x^5 + x^6)^4*(-1 - 2*x^5 + x^6)*(-21 - 46 x^5 + x^6); g[x_] = Expand[x^36*f[1/x]]; a = Table[ SeriesCoefficient[Series[1/g[x], {x, 0, 30}], n], {n, 0, 30}] (* or *)

%t Rest[CoefficientList[Series[x/((-1 + x + x^6)^4*(-1 + 2*x + x^6)*(-1 + 46*x

%t + 21 *x^6)), {x, 0 , 14}], x]] // Flatten (* _Georg Fischer_, Feb 17 2020 *)

%K nonn,easy

%O 1,2

%A _Roger L. Bagula_, Jan 31 2008