This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097836 Chebyshev polynomials S(n,51). 5
 1, 51, 2600, 132549, 6757399, 344494800, 17562477401, 895341852651, 45644872007800, 2326993130545149, 118631004785794799, 6047854250944989600, 308321935793408674801, 15718370871212897425251, 801328592496064360013000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Used for all positive integer solutions of Pell equation x^2 - 53*y^2 = -4. See A097837 with A097838. a(n-1), with a(-1) := 0, and b(n) := A099368(n) give the proper and improper nonnegative solutions of the Pell equation b(n)^2 - 53*(7*a(n-1))^2 = +4, n >= 0. - Wolfdieter Lang, Jun 27 2013 LINKS Indranil Ghosh, Table of n, a(n) for n = 0..584 R. Flórez, R. A. Higuita, A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014). Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (51, -1). FORMULA a(n)= S(n, 51)=U(n, 51/2)= S(2*n+1, sqrt(53))/sqrt(53) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x). a(n) = 51*a(n-1) - a(n-2), n >= 1, a(-1)=0, a(0)=1, a(1)=51. a(n)=(ap^(n+1) - am^(n+1))/(ap-am) with ap := (51+7*sqrt(53))/2 and am := (51-7*sqrt(53))/2 = 1/ap. G.f.: 1/(1-51*x+x^2). MATHEMATICA LinearRecurrence[{51, -1}, {1, 51}, 30] (* G. C. Greubel, Jan 12 2019 *) PROG (PARI) my(x='x+O('x^30)); Vec(1/(1-51*x+x^2)) \\ G. C. Greubel, Jan 12 2019 (MAGMA) m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(1-51*x+x^2) )); // G. C. Greubel, Jan 12 2019 (Sage) (1/(1-51*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 12 2019 (GAP) a:=[1, 51];; for n in [2..30] do a[n]:=51*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 12 2019 CROSSREFS Sequence in context: A210177 A210080 A218752 * A267786 A267733 A238603 Adjacent sequences:  A097833 A097834 A097835 * A097837 A097838 A097839 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Sep 10 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 12:10 EDT 2019. Contains 328219 sequences. (Running on oeis4.)