login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097836 Chebyshev polynomials S(n,51). 5
1, 51, 2600, 132549, 6757399, 344494800, 17562477401, 895341852651, 45644872007800, 2326993130545149, 118631004785794799, 6047854250944989600, 308321935793408674801, 15718370871212897425251, 801328592496064360013000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Used for all positive integer solutions of Pell equation x^2 - 53*y^2 = -4. See A097837 with A097838.

a(n-1), with a(-1) := 0, and b(n) := A099368(n) give the proper and improper nonnegative solutions of the Pell equation b(n)^2 - 53*(7*a(n-1))^2 = +4, n >= 0. - Wolfdieter Lang, Jun 27 2013

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..584

R. Flórez, R. A. Higuita, A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (51, -1).

Index entries for sequences related to Chebyshev polynomials.

FORMULA

a(n)= S(n, 51)=U(n, 51/2)= S(2*n+1, sqrt(53))/sqrt(53) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).

a(n)=51*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=51; a(-1):=0.

a(n)=(ap^(n+1) - am^(n+1))/(ap-am) with ap := (51+7*sqrt(53))/2 and am := (51-7*sqrt(53))/2 = 1/ap.

G.f.: 1/(1-51*x+x^2).

CROSSREFS

Sequence in context: A210177 A210080 A218752 * A267786 A267733 A238603

Adjacent sequences:  A097833 A097834 A097835 * A097837 A097838 A097839

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Sep 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 30 08:33 EDT 2017. Contains 285645 sequences.