OFFSET
0,2
LINKS
FORMULA
a(n) = sum(S(k, 20), k=0..n) with S(k, 20) = U(k, 10) = A075843(k+1) Chebyshev's polynomials of the second kind.
G.f.: 1/((1-x)*(1-20*x+x^2)) = 1/(1-21*x+21*x^2-x^3).
a(n) = 20*a(n-1)-a(n-2)+1, n>=1, a(-1)=0, a(0)=1.
a(n) = (S(n+1, 20) - S(n, 20) -1)/18.
a(n) = 21*a(n-1)-21*a(n-2)+a(n-3), n>=2, a(-1)=0, a(0)=1, a(1)=21.
a(n) = (((10+3*sqrt(11))^(-n)*(33+10*sqrt(11)-11*(10+3*sqrt(11))^n*(1257+379*sqrt(11))+(10+3*sqrt(11))^(2*n)*(262680+79201*sqrt(11)))))/(198*(1257+379*sqrt(11))). - Colin Barker, Mar 03 2016
MATHEMATICA
LinearRecurrence[{21, -21, 1}, {1, 21, 420}, 16] (* Ray Chandler, Aug 11 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2004
STATUS
approved