login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097833
Partial sums of Chebyshev sequence S(n,20)= U(n,10)=A075843(n+1).
1
1, 21, 420, 8380, 167181, 3335241, 66537640, 1327417560, 26481813561, 528308853661, 10539695259660, 210265596339540, 4194772231531141, 83685179034283281, 1669508808454134480, 33306490990048406320
OFFSET
0,2
FORMULA
a(n) = sum(S(k, 20), k=0..n) with S(k, 20) = U(k, 10) = A075843(k+1) Chebyshev's polynomials of the second kind.
G.f.: 1/((1-x)*(1-20*x+x^2)) = 1/(1-21*x+21*x^2-x^3).
a(n) = 20*a(n-1)-a(n-2)+1, n>=1, a(-1)=0, a(0)=1.
a(n) = (S(n+1, 20) - S(n, 20) -1)/18.
a(n) = 21*a(n-1)-21*a(n-2)+a(n-3), n>=2, a(-1)=0, a(0)=1, a(1)=21.
a(n) = (((10+3*sqrt(11))^(-n)*(33+10*sqrt(11)-11*(10+3*sqrt(11))^n*(1257+379*sqrt(11))+(10+3*sqrt(11))^(2*n)*(262680+79201*sqrt(11)))))/(198*(1257+379*sqrt(11))). - Colin Barker, Mar 03 2016
MATHEMATICA
LinearRecurrence[{21, -21, 1}, {1, 21, 420}, 16] (* Ray Chandler, Aug 11 2015 *)
CROSSREFS
Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).
Sequence in context: A106656 A083043 A162807 * A163145 A163503 A163977
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2004
STATUS
approved