login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097830 Partial sums of Chebyshev sequence S(n,16) = U(n,16/2) = A077412(n). 2
1, 17, 272, 4336, 69105, 1101345, 17552416, 279737312, 4458244577, 71052175921, 1132376570160, 18046972946640, 287619190576081, 4583860076270657, 73054142029754432, 1164282412399800256, 18555464456367049665, 295723148889472994385, 4713014917775200860496 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..800

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (17, -17, 1).

FORMULA

a(n) = sum(S(k, 16), k=0..n) with S(k, 16) = U(k, 8) = A077412(k) Chebyshev's polynomials of the second kind.

G.f.: 1/((1-x)*(1-16*x+x^2)) = 1/(1-17*x+17*x^2-x^3).

a(n) = 17*a(n-1)-17*a(n-2)+a(n-3) with n>=2, a(-1)=0, a(0)=1, a(1)=17.

a(n) = 16*a(n-1)-a(n-2)+1 with n>=1, a(-1)=0, a(0)=1.

a(n) = (S(n+1, 16) - S(n, 16) -1)/14.

a(n) = (-6+(45-17*sqrt(7))*(8-3*sqrt(7))^n+(8+3*sqrt(7))^n*(45+17*sqrt(7)))/84. - Colin Barker, Mar 04 2016

MATHEMATICA

LinearRecurrence[{17, -17, 1}, {1, 17, 272}, 30] (* or *) Accumulate[ ChebyshevU[Range[0, 30], 8]] (* Harvey P. Dale, Nov 09 2011 *)

PROG

(PARI) Vec(1/((1-x)*(1-16*x+x^2)) + O(x^25)) \\ Colin Barker, Mar 04 2016

CROSSREFS

Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Sequence in context: A142898 A159678 A162803 * A163093 A163451 A163965

Adjacent sequences:  A097827 A097828 A097829 * A097831 A097832 A097833

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 23:55 EST 2016. Contains 278902 sequences.