login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097830
Partial sums of Chebyshev sequence S(n,16) = U(n,16/2) = A077412(n).
4
1, 17, 272, 4336, 69105, 1101345, 17552416, 279737312, 4458244577, 71052175921, 1132376570160, 18046972946640, 287619190576081, 4583860076270657, 73054142029754432, 1164282412399800256, 18555464456367049665, 295723148889472994385, 4713014917775200860496
OFFSET
0,2
FORMULA
a(n) = sum(S(k, 16), k=0..n) with S(k, 16) = U(k, 8) = A077412(k) Chebyshev's polynomials of the second kind.
G.f.: 1/((1-x)*(1-16*x+x^2)) = 1/(1-17*x+17*x^2-x^3).
a(n) = 17*a(n-1)-17*a(n-2)+a(n-3) with n>=2, a(-1)=0, a(0)=1, a(1)=17.
a(n) = 16*a(n-1)-a(n-2)+1 with n>=1, a(-1)=0, a(0)=1.
a(n) = (S(n+1, 16) - S(n, 16) -1)/14.
a(n) = (-6+(45-17*sqrt(7))*(8-3*sqrt(7))^n+(8+3*sqrt(7))^n*(45+17*sqrt(7)))/84. - Colin Barker, Mar 04 2016
MATHEMATICA
LinearRecurrence[{17, -17, 1}, {1, 17, 272}, 30] (* or *) Accumulate[ ChebyshevU[Range[0, 30], 8]] (* Harvey P. Dale, Nov 09 2011 *)
PROG
(PARI) Vec(1/((1-x)*(1-16*x+x^2)) + O(x^25)) \\ Colin Barker, Mar 04 2016
CROSSREFS
Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).
Sequence in context: A142898 A159678 A162803 * A163093 A163451 A163965
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2004
STATUS
approved