login
A163451
Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
1
1, 17, 272, 4352, 69632, 1113976, 17821440, 285108360, 4561178880, 72969984000, 1167377713080, 18675771192000, 298775988016200, 4779834262113600, 76468044587443200, 1223339873805905400, 19571056837109136000
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170736, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(120*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1).
a(n) = 15*a(n-1)+15*a(n-2)+15*a(n-3)+15*a(n-4)-120*a(n-5). - Wesley Ivan Hurt, May 10 2021
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6), {x, 0, 20}], x] (* G. C. Greubel, Dec 24 2016 *)
coxG[{5, 120, -15}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 13 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6)) \\ G. C. Greubel, Dec 24 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6) )); // G. C. Greubel, May 13 2019
(Sage) ((1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019
CROSSREFS
Sequence in context: A162803 A097830 A163093 * A163965 A164628 A164868
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved