This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163451 Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I. 1
 1, 17, 272, 4352, 69632, 1113976, 17821440, 285108360, 4561178880, 72969984000, 1167377713080, 18675771192000, 298775988016200, 4779834262113600, 76468044587443200, 1223339873805905400, 19571056837109136000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The initial terms coincide with those of A170736, although the two sequences are eventually different. Computed with MAGMA using commands similar to those used to compute A154638. LINKS G. C. Greubel, Table of n, a(n) for n = 0..825 Index entries for linear recurrences with constant coefficients, signature (15, 15, 15, 15, -120). FORMULA G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(120*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1). MATHEMATICA CoefficientList[Series[(1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6), {x, 0, 20}], x] (* G. C. Greubel, Dec 24 2016 *) coxG[{5, 120, -15}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 13 2019 *) PROG (PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6)) \\ G. C. Greubel, Dec 24 2016 (MAGMA) R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6) )); // G. C. Greubel, May 13 2019 (Sage) ((1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019 CROSSREFS Sequence in context: A162803 A097830 A163093 * A163965 A164628 A164868 Adjacent sequences:  A163448 A163449 A163450 * A163452 A163453 A163454 KEYWORD nonn AUTHOR John Cannon and N. J. A. Sloane, Dec 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 20:44 EDT 2019. Contains 328315 sequences. (Running on oeis4.)