login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163451 Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I. 1
1, 17, 272, 4352, 69632, 1113976, 17821440, 285108360, 4561178880, 72969984000, 1167377713080, 18675771192000, 298775988016200, 4779834262113600, 76468044587443200, 1223339873805905400, 19571056837109136000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The initial terms coincide with those of A170736, although the two sequences are eventually different.

Computed with MAGMA using commands similar to those used to compute A154638.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..825

Index entries for linear recurrences with constant coefficients, signature (15, 15, 15, 15, -120).

FORMULA

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(120*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1).

MATHEMATICA

CoefficientList[Series[(1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6), {x, 0, 20}], x] (* G. C. Greubel, Dec 24 2016 *)

coxG[{5, 120, -15}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 13 2019 *)

PROG

(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6)) \\ G. C. Greubel, Dec 24 2016

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6) )); // G. C. Greubel, May 13 2019

(Sage) ((1+x)*(1-x^5)/(1-16*x+135*x^5-120*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019

CROSSREFS

Sequence in context: A162803 A097830 A163093 * A163965 A164628 A164868

Adjacent sequences:  A163448 A163449 A163450 * A163452 A163453 A163454

KEYWORD

nonn

AUTHOR

John Cannon and N. J. A. Sloane, Dec 03 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 20:44 EDT 2019. Contains 328315 sequences. (Running on oeis4.)