login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163448 a(n) = 20*a(n-1) - 98*a(n-2) for n > 1; a(0) = 1, a(1) = 12. 2
1, 12, 142, 1664, 19364, 224208, 2586488, 29757376, 341671696, 3917211072, 44860395232, 513321219584, 5870105658944, 67096633659648, 766662318616448, 8757776273683456, 100022618249257216, 1142190290164165632 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of A163447. Tenth binomial transform of A163403.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..940 (first 100 terms from Vincenzo Librandi)

Index entries for linear recurrences with constant coefficients, signature (20, -98).

FORMULA

a(n) = ((1+sqrt(2))*(10+sqrt(2))^n + (1-sqrt(2))*(10-sqrt(2))^n)/2.

G.f.: (1-8*x)/(1-20*x+98*x^2).

a(n) = (31*(10-sqrt(2))^n - 41*sqrt(2)*(10-sqrt(2))^n + 49*(10+sqrt(2))^n + 49*sqrt(2)*(10+sqrt(2))^n)/(98*(10+sqrt(2))). - Harvey P. Dale, Nov 14 2011

E.g.f.: exp(10*x)*( cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Dec 24 2016

MATHEMATICA

LinearRecurrence[{20, -98}, {1, 12}, 30] (* or *) With[{ms=10-Sqrt[2], ps=10+ Sqrt[2]}, Table[Simplify[(31ms^n-41Sqrt[2](ms^n)+49ps^n+49Sqrt[2] ps^n)/ (98ps)], {n, 20}]] (* Harvey P. Dale, Nov 14 2011 *)

PROG

(MAGMA) [ n le 2 select 11*n-10 else 20*Self(n-1)-98*Self(n-2): n in [1..18] ];

(PARI) Vec((1-8*x)/(1-20*x+98*x^2) + O(x^50)) \\ G. C. Greubel, Dec 24 2016

CROSSREFS

Cf. A163403, A163447.

Sequence in context: A056340 A056330 A158516 * A219307 A172210 A171317

Adjacent sequences:  A163445 A163446 A163447 * A163449 A163450 A163451

KEYWORD

nonn

AUTHOR

Klaus Brockhaus, Jul 27 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 14:00 EDT 2021. Contains 343995 sequences. (Running on oeis4.)