|
|
A163446
|
|
a(n) = 16*a(n-1) - 62*a(n-2) for n > 1; a(0) = 1, a(1) = 10.
|
|
3
|
|
|
1, 10, 98, 948, 9092, 86696, 823432, 7799760, 73743376, 696308896, 6568853024, 61930496832, 583619061824, 5498214185600, 51787045136512, 487703442676992, 4592458284368128, 43241719103916544, 407135092031840768
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
a(n) = ((1+sqrt(2))*(8+sqrt(2))^n + (1-sqrt(2))*(8-sqrt(2))^n)/2.
G.f.: (1-6*x)/(1-16*x+62*x^2).
E.g.f.: exp(8*x)*( cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Dec 23 2016
|
|
MATHEMATICA
|
LinearRecurrence[{16, -62}, {1, 10}, 30] (* Harvey P. Dale, Sep 25 2015 *)
|
|
PROG
|
(Magma) [ n le 2 select 9*n-8 else 16*Self(n-1)-62*Self(n-2): n in [1..19] ];
(PARI) Vec((1-6*x)/(1-16*x+62*x^2) + O(x^50)) \\ G. C. Greubel, Dec 23 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|