|
|
A190869
|
|
a(n) = 10*a(n-1) - 2*a(n-2), a(0)=0, a(1)=1.
|
|
4
|
|
|
0, 1, 10, 98, 960, 9404, 92120, 902392, 8839680, 86592016, 848240800, 8309223968, 81395758080, 797339132864, 7810599812480, 76511319859072, 749491998965760, 7341897349939456, 71919989501463040, 704516100314751488, 6901321024144588800, 67604178040816385024
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n+1) equals the number of words of length n over {0,1,2,3,4,5,6,7,8,9} avoiding 01 and 02. - Milan Janjic, Dec 17 2015
|
|
LINKS
|
|
|
FORMULA
|
a(n) = ((5+sqrt(23))^n-(5-sqrt(23))^n)/(2*sqrt(23)).
|
|
MAPLE
|
f:= gfun:-rectoproc({a(n) = 10*a(n-1) - 2*a(n-2), a(0)=0, a(1)=1}, a(n), remember):
|
|
MATHEMATICA
|
LinearRecurrence[{10, -2}, {0, 1}, 50] (* T. D. Noe, May 23 2011 *)
|
|
PROG
|
(Magma) I:=[0, 1]; [n le 2 select I[n] else 10*Self(n-1)-2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 17 2015
(PARI) concat(0, Vec(x/(1-10*x+2*x^2) + O(x^100))) \\ Altug Alkan, Dec 17 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Corrected and extended by T. D. Noe, May 23 2011
|
|
STATUS
|
approved
|
|
|
|