The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190872 a(n) = 11*a(n-1) - 9*a(n-2), a(0)=0, a(1)=1. 10
 0, 1, 11, 112, 1133, 11455, 115808, 1170793, 11836451, 119663824, 1209774005, 12230539639, 123647969984, 1250052813073, 12637749213947, 127764766035760, 1291672683467837, 13058516623824367, 132018628710857504, 1334678266205013241, 13493293269857428115 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(k) is Heuberger and Wagner's G_k at lemma 6.2 (2).  They show (theorem 3.3 (1)) that the largest number of maximum matchings in a tree of 7k+1 vertices is a(k+1) and there is a unique free tree with this many maximum matchings.  (See A333347 for all tree sizes.) - Kevin Ryde, Apr 11 2020 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Clemens Heuberger and Stephan Wagner, The Number of Maximum Matchings in a Tree, Discrete Mathematics, volume 311, issue 21, November 2011, pages 2512-2542; arXiv preprint, arXiv:1011.6554 [math.CO], 2010. Index entries for linear recurrences with constant coefficients, signature (11,-9). FORMULA a(n) = ((11+sqrt(85))^n-(11-sqrt(85))^n)/(2^n*sqrt(85)). G.f.: x/(1-11*x+9*x^2). - Philippe Deléham, Feb 12 2012 E.g.f.: (2/sqrt(85))*exp(11*x/2)*sinh(sqrt(85)*x/2). - G. C. Greubel, Dec 18 2015 a(n) = (L^n - H^n)/(L-H) where L = (11+sqrt(85))/2 and H = (11-sqrt(85))/2. [Heuberger and Wagner lemma 6.2 (2)] - Kevin Ryde, Apr 11 2020 MATHEMATICA LinearRecurrence[{11, -9}, {0, 1}, 50] (* T. D. Noe, May 23 2011 *) PROG (PARI) concat(0, Vec(x/(1-11*x+9*x^2) + O(x^100))) \\ Altug Alkan, Dec 18 2015 (PARI) a(n) = polcoeff(lift(Mod('x, 'x^2-11*'x+9)^n), 1); \\ Kevin Ryde, Apr 11 2020 (MAGMA) I:=[0, 1]; [n le 2 select I[n] else 11*Self(n-1)-9*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 19 2015 CROSSREFS Cf. A333345 (growth power), A190871, A190873. Sequence in context: A059996 A132938 A056618 * A024145 A053055 A024148 Adjacent sequences:  A190869 A190870 A190871 * A190873 A190874 A190875 KEYWORD nonn,easy AUTHOR Rolf Pleisch, May 22 2011 EXTENSIONS Extended by T. D. Noe, May 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 16 09:13 EDT 2020. Contains 335784 sequences. (Running on oeis4.)