login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190872
a(n) = 11*a(n-1) - 9*a(n-2), a(0)=0, a(1)=1.
11
0, 1, 11, 112, 1133, 11455, 115808, 1170793, 11836451, 119663824, 1209774005, 12230539639, 123647969984, 1250052813073, 12637749213947, 127764766035760, 1291672683467837, 13058516623824367, 132018628710857504, 1334678266205013241, 13493293269857428115
OFFSET
0,3
COMMENTS
a(k) is Heuberger and Wagner's G_k at lemma 6.2 (2). They show (theorem 3.3 (1)) that the largest number of maximum matchings in a tree of 7k+1 vertices is a(k+1) and there is a unique free tree with this many maximum matchings. (See A333347 for all tree sizes.) - Kevin Ryde, Apr 11 2020
LINKS
Clemens Heuberger and Stephan Wagner, The Number of Maximum Matchings in a Tree, Discrete Mathematics, volume 311, issue 21, November 2011, pages 2512-2542; arXiv preprint, arXiv:1011.6554 [math.CO], 2010.
FORMULA
a(n) = ((11+sqrt(85))^n-(11-sqrt(85))^n)/(2^n*sqrt(85)).
G.f.: x/(1-11*x+9*x^2). - Philippe Deléham, Feb 12 2012
E.g.f.: (2/sqrt(85))*exp(11*x/2)*sinh(sqrt(85)*x/2). - G. C. Greubel, Dec 18 2015
a(n) = (L^n - H^n)/(L-H) where L = (11+sqrt(85))/2 and H = (11-sqrt(85))/2. [Heuberger and Wagner lemma 6.2 (2)] - Kevin Ryde, Apr 11 2020
MATHEMATICA
LinearRecurrence[{11, -9}, {0, 1}, 50] (* T. D. Noe, May 23 2011 *)
PROG
(PARI) concat(0, Vec(x/(1-11*x+9*x^2) + O(x^100))) \\ Altug Alkan, Dec 18 2015
(PARI) a(n) = polcoeff(lift(Mod('x, 'x^2-11*'x+9)^n), 1); \\ Kevin Ryde, Apr 11 2020
(Magma) I:=[0, 1]; [n le 2 select I[n] else 11*Self(n-1)-9*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 19 2015
CROSSREFS
Cf. A333345 (growth power), A190871, A190873.
Sequence in context: A059996 A132938 A056618 * A024145 A053055 A024148
KEYWORD
nonn,easy
AUTHOR
Rolf Pleisch, May 22 2011
EXTENSIONS
Extended by T. D. Noe, May 23 2011
STATUS
approved