OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (11,-11).
FORMULA
a(n) = ((11+sqrt(77))^n-(11-sqrt(77))^n)/(2^n*sqrt(77)).
G.f.: x/(1-11x+11x^2). - Philippe Deléham, Dec 21 2011
E.g.f.: (2/sqrt(77))*exp(11*x/2)*sinh(sqrt(77)*x/2). - G. C. Greubel, Dec 18 2015
a(n) = (sqrt(11))^(n-1)*chebyshev_U(n-1, sqrt(11)/2). - G. C. Greubel, Sep 11 2023
MATHEMATICA
LinearRecurrence[{11, -11}, {0, 1}, 50] (* T. D. Noe, May 23 2011 *)
PROG
(PARI) concat(0, Vec(x/(1-11*x+11*x^2) + O(x^100))) \\ Altug Alkan, Dec 18 2015
(Magma) [n le 2 select n-1 else 11*(Self(n-1) - Self(n-2)): n in [1..31]]; // G. C. Greubel, Sep 11 2023
(SageMath)
def A190871(n): return (sqrt(11))^(n-1)*chebyshev_U(n-1, sqrt(11)/2)
[A190871(n) for n in range(31)] # G. C. Greubel, Sep 11 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Rolf Pleisch, May 22 2011
EXTENSIONS
Extended by T. D. Noe, May 23 2011
STATUS
approved