login
A190870
a(n) = 11*a(n-1) - 22*a(n-2), a(0)=0, a(1)=1.
1
0, 1, 11, 99, 847, 7139, 59895, 501787, 4201967, 35182323, 294562279, 2466173963, 20647543455, 172867150819, 1447292702999, 12117142414971, 101448127098703, 849352264956371, 7111016118348615, 59535427472794603, 498447347597071103, 4173141419166300867
OFFSET
0,3
FORMULA
a(n) = ((11+sqrt(33))^n-(11-sqrt(33))^n)/(2^n*sqrt(33)).
E.g.f.: (2/sqrt(33))*exp(11*x/2)*sinh(sqrt(33)*x/2). - G. C. Greubel, Dec 18 2015
G.f.: x/(1-11*x+22*x^2). - G. C. Greubel, Dec 18 2015
MATHEMATICA
LinearRecurrence[{11, -22}, {0, 1}, 50] (* T. D. Noe, May 23 2011 *)
PROG
(PARI) concat(0, Vec(x/(1-11*x+22*x^2) + O(x^100))) \\ Altug Alkan, Dec 18 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Rolf Pleisch, May 22 2011
EXTENSIONS
Extended by T. D. Noe, May 23 2011
STATUS
approved