OFFSET
1,8
COMMENTS
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
Aleksandar Ivić, On the asymptotic formulas for powerful numbers, Publications de l'Institut Mathématique, Vol. 23, No. 37 (1978), pp. 85-94; alternative link.
FORMULA
a(n) = Sum_{d|n, d in A036966} 1.
a(n) <= A005361(n).
Multiplicative with a(p^e) = max(1,e-1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/(p^2*(p-1))) (A065483). (Ivić, 1978). - Amiram Eldar, Jul 23 2022
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 1/p^(3*s)). - Amiram Eldar, Sep 21 2023
EXAMPLE
a(16)=3 because the divisors of 16 are {1,2,4,8,16}, and three of these are 3-full: 1, 8=2^3 and 16=2^4.
MAPLE
f:= n -> convert(map(t -> max(1, t[2]-1), ifactors(n)[2]), `*`):
map(f, [$1..200]); # Robert Israel, Jul 19 2017
MATHEMATICA
Table[Product[Max[{1, i - 1}], {i, FactorInteger[n][[All, 2]]}], {n, 1, 200}] (* Geoffrey Critzer, Feb 12 2015 *)
Table[1 + DivisorSum[n, 1 &, AllTrue[FactorInteger[#][[All, -1]], # > 2 &] &], {n, 120}] (* Michael De Vlieger, Jul 19 2017 *)
PROG
(PARI) A190867(n) = { my(f = factor(n), m = 1); for (k=1, #f~, m *= max(1, f[k, 2]-1); ); m; } \\ Antti Karttunen, Jul 19 2017
(Python)
from sympy import factorint
from operator import mul
def a(n): return 1 if n==1 else reduce(mul, [max(1, e - 1) for e in factorint(n).values()])
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 19 2017
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
R. J. Mathar, May 27 2011
STATUS
approved