login
A321167
The e-unitary Euler function: a(1) = 1, a(n) = Product uphi(e(i)) for n = Product p(i)^e(i), where uphi is the unitary totient function (A047994).
3
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1
OFFSET
1,8
COMMENTS
The unitary version of A072911.
For n = Product p(i)^e(i) > 1, a(n) is the number of divisors d of n such that d and n are exponentially unitary coprime, i.e., d = Product p(i)^f(i) where 1 <= f(i) <= e(i) and uGCD(f(i), e(i)) = 1 for any i, where uGCD(m, n) is the largest divisor of m that is a unitary divisor of n.
LINKS
Nicusor Minculete and László Tóth, Exponential unitary divisors, Annales Univ. Sci. Budapest., Sect. Comp. Vol. 35 (2011), pp. 205-216.
FORMULA
Sum_{k=1..n} a(k) ~ c_1 * n + c_2 * n^(1/3) + O(n^(1/4 + eps)), where c_1 = A358658 and c_2 is a constant (see Minculete and Tóth, 2011). - Amiram Eldar, Nov 29 2022
MATHEMATICA
f[p_, e_] := p^e-1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; fe[p_, e_] := uphi[e]; euphi[n_] := Times @@ fe @@@ FactorInteger[n]; Array[euphi, 100]
PROG
(PARI) uphi(n) = {my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2]-1)};
a(n) = {my(f=factor(n)); prod(i=1, #f~, uphi(f[i, 2]))}; \\ Amiram Eldar, Nov 29 2022
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Jan 10 2019
STATUS
approved