OFFSET
1,2
COMMENTS
Conjecture: For m >= 4, a(39 + (m-4)*77) = 5^m and the 77 first differences to the next m are ((x,y,x)^6, x, 4, y-4, x, (x,y,x)^11, x, y-4, 4, x, (x,y,x)^6) with x = 5^(m-2)-5, y = 2*(5^(m-2)+5). Verified to m=30.
LINKS
Lars Blomberg, Table of n, a(n) for n = 1..2100
EXAMPLE
21 is a term because 21 = 41_5 and Fibonacci(21) = 10946 = 322241_5 which ends in 41.
MATHEMATICA
fk5Q[n_]:=Module[{idn5=IntegerDigits[n, 5]}, Take[IntegerDigits[ Fibonacci[ n], 5], -Length[idn5]]==idn5]; Select[Range[1200], fk5Q] (* Harvey P. Dale, May 10 2020 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Lars Blomberg, Jan 10 2019
STATUS
approved