login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328407
G.f. A(x) satisfies: A(x) = A(x^2) + x * (1 + x) / (1 - x)^3.
4
1, 5, 9, 21, 25, 45, 49, 85, 81, 125, 121, 189, 169, 245, 225, 341, 289, 405, 361, 525, 441, 605, 529, 765, 625, 845, 729, 1029, 841, 1125, 961, 1365, 1089, 1445, 1225, 1701, 1369, 1805, 1521, 2125, 1681, 2205, 1849, 2541, 2025, 2645, 2209, 3069, 2401, 3125, 2601, 3549, 2809, 3645, 3025
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>=0} x^(2^k) * (1 + x^(2^k)) / (1 - x^(2^k))^3.
G.f.: (1/3) * Sum_{k>=1} J_2(2*k) * x^k / (1 - x^k), where J_2() is the Jordan function (A007434).
Dirichlet g.f.: zeta(s-2) / (1 - 2^(-s)).
a(2*n) = a(n) + 4*n^2, a(2*n+1) = (2*n + 1)^2.
a(n) = Sum_{d|n} A209229(n/d) * d^2.
Product_{n>=1} (1 + x^n)^a(n) = g.f. for A023871.
Sum_{k=1..n} a(k) ~ 8*n^3/21. - Vaclav Kotesovec, Oct 15 2019
Multiplicative with a(2^e) = (4^(e+1)-1)/3, and a(p^e) = p^(2*e) for an odd prime p. - Amiram Eldar, Oct 25 2020
MATHEMATICA
nmax = 55; CoefficientList[Series[Sum[x^(2^k) (1 + x^(2^k))/(1 - x^(2^k))^3, {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] // Rest
a[n_] := If[EvenQ[n], a[n/2] + n^2, n^2]; Table[a[n], {n, 1, 55}]
Table[DivisorSum[n, Boole[IntegerQ[Log[2, n/#]]] #^2 &], {n, 1, 55}]
f[p_, e_] := If[p == 2, (4^(e + 1) - 1)/3, p^(2*e)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
PROG
(Magma) [n eq 1 select 1 else IsOdd(n) select n^2 else Self(n div 2)+n^2 :n in [1..55]]; // Marius A. Burtea, Oct 15 2019
KEYWORD
nonn,mult,easy
AUTHOR
Ilya Gutkovskiy, Oct 14 2019
STATUS
approved