The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328409 Number of inversion sequences of length n where all consecutive subsequences i,j,k satisfy i > j < k or i <= j >= k. 5
 1, 1, 2, 3, 6, 16, 57, 245, 1248, 7151, 46104, 325560, 2523437, 21106494, 190806861, 1842347541, 19018910502, 208088481921, 2414462433024, 29512737830802, 380156646308541, 5133381861786182, 72678441538790901, 1074324277172134786, 16581261996774703606 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..485 Juan S. Auli and Sergi Elizalde, Consecutive patterns in inversion sequences II: avoiding patterns of relations, arXiv:1906.07365 [math.CO], 2019. FORMULA a(n) ~ n! * c * 2^n * n^(Pi/4 - 1/2) / Pi^n, where c = 0.52096414784... - Vaclav Kotesovec, Oct 31 2019 EXAMPLE a(0) = 1: the empty sequence. a(1) = 1: 0. a(2) = 2: 00, 01. a(3) = 3: 000, 010, 011. a(4) = 6: 0000, 0101, 0102, 0103, 0110, 0111. a(5) = 16: 00000, 01010, 01011, 01020, 01021, 01022, 01030, 01031, 01032, 01033, 01101, 01102, 01103, 01104, 01110, 01111. MAPLE b:= proc(n, j, t, c) option remember; `if`(n=0, 1, add(`if`((i>j      xor t) and c=0, 0, b(n-1, i, is(i b(n, 0, true, 2): seq(a(n), n=0..24); MATHEMATICA b[n_, j_, t_, c_] := b[n, j, t, c] = If[n == 0, 1, Sum[If[Xor[i>j, t] && c == 0, 0, b[n - 1, i, i

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 10:31 EDT 2021. Contains 345162 sequences. (Running on oeis4.)