login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x) = A(x^2) + x * (1 + x) / (1 - x)^3.
4

%I #18 Sep 08 2022 08:46:24

%S 1,5,9,21,25,45,49,85,81,125,121,189,169,245,225,341,289,405,361,525,

%T 441,605,529,765,625,845,729,1029,841,1125,961,1365,1089,1445,1225,

%U 1701,1369,1805,1521,2125,1681,2205,1849,2541,2025,2645,2209,3069,2401,3125,2601,3549,2809,3645,3025

%N G.f. A(x) satisfies: A(x) = A(x^2) + x * (1 + x) / (1 - x)^3.

%H Amiram Eldar, <a href="/A328407/b328407.txt">Table of n, a(n) for n = 1..10000</a>

%F G.f.: Sum_{k>=0} x^(2^k) * (1 + x^(2^k)) / (1 - x^(2^k))^3.

%F G.f.: (1/3) * Sum_{k>=1} J_2(2*k) * x^k / (1 - x^k), where J_2() is the Jordan function (A007434).

%F Dirichlet g.f.: zeta(s-2) / (1 - 2^(-s)).

%F a(2*n) = a(n) + 4*n^2, a(2*n+1) = (2*n + 1)^2.

%F a(n) = Sum_{d|n} A209229(n/d) * d^2.

%F Product_{n>=1} (1 + x^n)^a(n) = g.f. for A023871.

%F Sum_{k=1..n} a(k) ~ 8*n^3/21. - _Vaclav Kotesovec_, Oct 15 2019

%F Multiplicative with a(2^e) = (4^(e+1)-1)/3, and a(p^e) = p^(2*e) for an odd prime p. - _Amiram Eldar_, Oct 25 2020

%t nmax = 55; CoefficientList[Series[Sum[x^(2^k) (1 + x^(2^k))/(1 - x^(2^k))^3, {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] // Rest

%t a[n_] := If[EvenQ[n], a[n/2] + n^2, n^2]; Table[a[n], {n, 1, 55}]

%t Table[DivisorSum[n, Boole[IntegerQ[Log[2, n/#]]] #^2 &], {n, 1, 55}]

%t f[p_, e_] := If[p == 2, (4^(e + 1) - 1)/3, p^(2*e)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Oct 25 2020 *)

%o (Magma) [n eq 1 select 1 else IsOdd(n) select n^2 else Self(n div 2)+n^2 :n in [1..55]]; // _Marius A. Burtea_, Oct 15 2019

%Y Cf. A000290, A001511, A007434, A016754, A023871, A129527, A209229, A328408.

%K nonn,mult,easy

%O 1,2

%A _Ilya Gutkovskiy_, Oct 14 2019