login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355936
Dirichlet inverse of A295316, characteristic function of exponentially odd numbers.
2
1, -1, -1, 1, -1, 1, -1, -2, 1, 1, -1, -1, -1, 1, 1, 3, -1, -1, -1, -1, 1, 1, -1, 2, 1, 1, -2, -1, -1, -1, -1, -5, 1, 1, 1, 1, -1, 1, 1, 2, -1, -1, -1, -1, -1, 1, -1, -3, 1, -1, 1, -1, -1, 2, 1, 2, 1, 1, -1, 1, -1, 1, -1, 8, 1, -1, -1, -1, 1, -1, -1, -2, -1, 1, -1, -1, 1, -1, -1, -3, 3, 1, -1, 1, 1, 1, 1, 2, -1, 1, 1, -1, 1, 1, 1, 5, -1, -1, -1, 1, -1, -1, -1, 2, -1
OFFSET
1,8
COMMENTS
Multiplicative because A295316 is.
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A295316(n/d) * a(d).
Multiplicative with a(p^e) = (-1)^e * Fibonacci(e). - Sebastian Karlsson, Jul 24 2022
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = Product_{primes p} (1 + 1/(p^3 - p^2 - p)) = 1.6256655992867552241340804110236555506570411887342367924818823782775... - Vaclav Kotesovec, Feb 27 2023
MATHEMATICA
s[n_] := If[AllTrue[FactorInteger[n][[;; , -1]], OddQ], 1, 0]; a[1] = 1; a[n_] := -DivisorSum[n, a[#]*s[n/#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 21 2022 *)
PROG
(PARI)
A295316(n) = factorback(apply(e -> (e%2), factorint(n)[, 2]));
memoA355936 = Map();
A355936(n) = if(1==n, 1, my(v); if(mapisdefined(memoA355936, n, &v), v, v = -sumdiv(n, d, if(d<n, A295316(n/d)*A355936(d), 0)); mapput(memoA355936, n, v); (v)));
CROSSREFS
Cf. also A355826.
Cf. A000045.
Sequence in context: A368328 A321167 A190867 * A326976 A117358 A294333
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Jul 21 2022
STATUS
approved