login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355939
Dirichlet inverse of A080339, characteristic function of noncomposite numbers.
3
1, -1, -1, 1, -1, 2, -1, -1, 1, 2, -1, -3, -1, 2, 2, 1, -1, -3, -1, -3, 2, 2, -1, 4, 1, 2, -1, -3, -1, -6, -1, -1, 2, 2, 2, 6, -1, 2, 2, 4, -1, -6, -1, -3, -3, 2, -1, -5, 1, -3, 2, -3, -1, 4, 2, 4, 2, 2, -1, 12, -1, 2, -3, 1, 2, -6, -1, -3, 2, -6, -1, -10, -1, 2, -3, -3, 2, -6, -1, -5, 1, 2, -1, 12, 2, 2, 2, 4, -1, 12, 2, -3, 2, 2, 2, 6, -1, -3, -3, 6, -1, -6, -1, 4, -6
OFFSET
1,6
COMMENTS
The absolute values of this sequence are given by A008480. Compare also to A355817 and A335452.
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A010051(n/d) * a(d).
Dirichlet g.f.: 1/(1 + B(s)), where B(s) is d.g.f. of characteristic function of primes. - Vaclav Kotesovec, Jul 22 2022
MATHEMATICA
s[n_] := If[CompositeQ[n], 0, 1]; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, s[n/#]*a[#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 21 2022 *)
PROG
(PARI)
memoA355939 = Map();
A355939(n) = if(1==n, 1, my(v); if(mapisdefined(memoA355939, n, &v), v, v = -sumdiv(n, d, if(d<n, isprime(n/d)*A355939(d), 0)); mapput(memoA355939, n, v); (v)));
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Jul 21 2022
STATUS
approved