login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355817
Dirichlet inverse of A010055, characteristic function of powers of primes.
3
1, -1, -1, 0, -1, 2, -1, 0, 0, 2, -1, -1, -1, 2, 2, 0, -1, -1, -1, -1, 2, 2, -1, 0, 0, 2, 0, -1, -1, -6, -1, 0, 2, 2, 2, 2, -1, 2, 2, 0, -1, -6, -1, -1, -1, 2, -1, 0, 0, -1, 2, -1, -1, 0, 2, 0, 2, 2, -1, 6, -1, 2, -1, 0, 2, -6, -1, -1, 2, -6, -1, -1, -1, 2, -1, -1, 2, -6, -1, 0, 0, 2, -1, 6, 2, 2, 2, 0, -1, 6, 2
OFFSET
1,6
COMMENTS
Question: Are the absolute values of this sequence given by A335452? Compare also to A355939 and A008480.
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A010055(n/d) * a(d).
MATHEMATICA
s[n_] := If[PrimeNu[n] < 2, 1, 0]; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, s[n/#]*a[#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 19 2022 *)
PROG
(PARI)
A010055(n) = ((1==n)||isprimepower(n));
memoA355817 = Map();
A355817(n) = if(1==n, 1, my(v); if(mapisdefined(memoA355817, n, &v), v, v = -sumdiv(n, d, if(d<n, A010055(n/d)*A355817(d), 0)); mapput(memoA355817, n, v); (v)));
CROSSREFS
Cf. also A050363, A355827, A355939.
Sequence in context: A345164 A050326 A335452 * A056169 A286852 A341595
KEYWORD
sign
AUTHOR
Antti Karttunen, Jul 19 2022
STATUS
approved