login
A355815
a(n) = gcd(A276086(n), A277791(n)), where A276086 is primorial base exp-function and A277791 is the denominator of sum of reciprocals of proper divisors of n.
4
1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 15, 1, 1, 1, 1, 5, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 3, 1, 7, 1, 1, 1, 3, 5, 1, 7, 1, 1, 15, 1, 1, 1, 7, 25, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 21, 1, 1, 1, 1, 1, 3, 35, 1, 1, 1, 1, 25, 1, 7, 1, 1, 1, 3, 1, 1, 7, 5, 1, 3, 1, 1, 1, 7, 1, 3, 1, 1, 1, 1, 49, 3, 5, 1, 1, 1, 1, 105
OFFSET
1,9
FORMULA
a(n) = gcd(A276086(n), A277791(n)).
PROG
(PARI)
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A277791(n) = denominator((sigma(n)-1)/n); \\ From A277791
A355815(n) = gcd(A276086(n), A277791(n));
(Python)
from math import gcd
from sympy import nextprime, divisor_sigma
def A355815(n):
m, p, c = 1, 2, n
while c:
c, a = divmod(c, p)
m *= p**a
p = nextprime(p)
return gcd(m, n//gcd(n, divisor_sigma(n)-1)) # Chai Wah Wu, Jul 18 2022
CROSSREFS
Sequence contains only terms of A048103.
Cf. also A327858, A355003.
Sequence in context: A016452 A346095 A091717 * A154512 A030588 A307860
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 18 2022
STATUS
approved