login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355814
Smallest value t such that 1/s^2 + 1/t^2 = 1/p^2 + 1/q^2 has exactly n solutions (p,q) where p,q < t; or -1 if no such t exists.
2
35, 55, 210, 240, 595, 360, 560, 504, 630, 720, 1295, 1848, 1890, 1386, 1680, 2640, 2520, 3024, 5600, 3960, 2730, 4680, 6160, 8775, 9450, 5850, 5460, 5544, 9520
OFFSET
1,1
COMMENTS
Terms beyond a(11) = 1295 other than a(14) = 1386, if not equal to -1, are greater than 1500.
a(16) <= 7735.
Conjecture: a(n) is divisible by 35 for odd n.
EXAMPLE
t = 35: (s,p,q) = (5,7,7);
t = 55: (s,p,q) = (10,11,22),(10,22,11);
t = 210: (s,p,q) = (30,42,42),(95,114,133),(95,133,114);
t = 240: (s,p,q) = (70,84,112),(70,112,84),(108,135,144),(108,144,135);
t = 595: (s,p,q) = (85,91,221),(85,119,119),(85,221,91),(210,238,357),(210,357,238);
t = 360: (s,p,q) = (20,24,36),(20,36,24),(30,40,45),(30,45,40),(105,126,168),(105,168,126);
t = 560: (s,p,q) = (45,48,126),(70,80,140),(80,112,112),(45,126,48),(70,140,80),(252,315,336),(252,336,315);
t = 504: (s,p,q) = (42,56,63),(54,56,189),(42,63,56),(63,72,126),(63,126,72),(112,144,168),(112,168,144),(54,189,56);
t = 630: (s,p,q) = (35,42,63),(35,63,42),(56,63,120),(56,120,63),(90,126,126),(140,180,210),(140,210,180),(285,342,399),(285,399,342);
t = 720: (s,p,q) = (40,48,72),(40,72,48),(60,80,90),(60,90,80),(165,176,396),(210,252,336),(210,336,252),(165,396,176),(324,405,432),(324,432,405).
PROG
(PARI) b(n) = my(v=[; ], r); for(p=1, n-1, for(q=1, n-1, r=1/(1/p^2+1/q^2-1/n^2); if(r==r\1 && issquare(r), v=concat(v, [p; q])))); v
search_up_to(Max, lim) = my(v=vector(Max, i, -1), num); for(n=1, lim, if((num=#b(n))>0 && num<=Max && v[num]==-1, v[num]=n)); v
CROSSREFS
Sequence in context: A319386 A157352 A176255 * A090877 A048033 A254366
KEYWORD
nonn,hard,more
AUTHOR
Jianing Song, Jul 18 2022
EXTENSIONS
a(12)-a(29) from Bert Dobbelaere, Jul 19 2022
STATUS
approved