login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest value t such that 1/s^2 + 1/t^2 = 1/p^2 + 1/q^2 has exactly n solutions (p,q) where p,q < t; or -1 if no such t exists.
2

%I #20 Jul 19 2022 18:23:28

%S 35,55,210,240,595,360,560,504,630,720,1295,1848,1890,1386,1680,2640,

%T 2520,3024,5600,3960,2730,4680,6160,8775,9450,5850,5460,5544,9520

%N Smallest value t such that 1/s^2 + 1/t^2 = 1/p^2 + 1/q^2 has exactly n solutions (p,q) where p,q < t; or -1 if no such t exists.

%C Terms beyond a(11) = 1295 other than a(14) = 1386, if not equal to -1, are greater than 1500.

%C a(16) <= 7735.

%C Conjecture: a(n) is divisible by 35 for odd n.

%e t = 35: (s,p,q) = (5,7,7);

%e t = 55: (s,p,q) = (10,11,22),(10,22,11);

%e t = 210: (s,p,q) = (30,42,42),(95,114,133),(95,133,114);

%e t = 240: (s,p,q) = (70,84,112),(70,112,84),(108,135,144),(108,144,135);

%e t = 595: (s,p,q) = (85,91,221),(85,119,119),(85,221,91),(210,238,357),(210,357,238);

%e t = 360: (s,p,q) = (20,24,36),(20,36,24),(30,40,45),(30,45,40),(105,126,168),(105,168,126);

%e t = 560: (s,p,q) = (45,48,126),(70,80,140),(80,112,112),(45,126,48),(70,140,80),(252,315,336),(252,336,315);

%e t = 504: (s,p,q) = (42,56,63),(54,56,189),(42,63,56),(63,72,126),(63,126,72),(112,144,168),(112,168,144),(54,189,56);

%e t = 630: (s,p,q) = (35,42,63),(35,63,42),(56,63,120),(56,120,63),(90,126,126),(140,180,210),(140,210,180),(285,342,399),(285,399,342);

%e t = 720: (s,p,q) = (40,48,72),(40,72,48),(60,80,90),(60,90,80),(165,176,396),(210,252,336),(210,336,252),(165,396,176),(324,405,432),(324,432,405).

%o (PARI) b(n) = my(v=[;],r); for(p=1, n-1, for(q=1, n-1, r=1/(1/p^2+1/q^2-1/n^2); if(r==r\1 && issquare(r), v=concat(v,[p;q])))); v

%o search_up_to(Max,lim) = my(v=vector(Max,i,-1),num); for(n=1, lim, if((num=#b(n))>0 && num<=Max && v[num]==-1, v[num]=n)); v

%Y Cf. A355812, A355813.

%K nonn,hard,more

%O 1,1

%A _Jianing Song_, Jul 18 2022

%E a(12)-a(29) from _Bert Dobbelaere_, Jul 19 2022