login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319386
Semiprimes k = pq with primes p < q such that p-1 does not divide q-1.
2
35, 55, 77, 95, 115, 119, 143, 155, 161, 187, 203, 209, 215, 221, 235, 247, 253, 287, 295, 299, 319, 323, 329, 335, 355, 371, 377, 391, 395, 403, 407, 413, 415, 437, 473, 493, 497, 515, 517, 527, 533, 535, 551, 559, 581, 583, 589, 611, 623, 629, 635, 649, 655, 667, 689, 695, 697, 707, 713, 731
OFFSET
1,1
COMMENTS
The "anti-Carmichael semiprimes" defined: semiprimes k such that lpf(k)-1 does not divide k-1; then also gpf(k)-1 does not divide k-1.
All the terms are odd and indivisible by 3.
If k is in the sequence, then gcd(k,b^k-b)=1 for some integer b.
These numbers are probably all semiprimes in A121707.
LINKS
EXAMPLE
35 = 5*7 is a term since 5-1 does not divide 7-1.
35 is a term since lpf(35)-1 = 5-1 does not divide 35-1.
MAPLE
N:= 1000: # for terms <= N
P:= select(isprime, {seq(i, i=5..N/5, 2)}):
S:= {}:
for p in P do
Qs:= select(q -> q > p and q <= N/p and (q-1 mod (p-1) <> 0), P);
S:= S union map(`*`, Qs, p);
od:
sort(convert(S, list)); # Robert Israel, Apr 14 2020
MATHEMATICA
spndQ[n_]:=Module[{fi=FactorInteger[n][[All, 1]]}, PrimeOmega[n]==2 && Length[ fi]==2&&Mod[fi[[2]]-1, fi[[1]]-1]!=0]; Select[Range[800], spndQ] (* Harvey P. Dale, Jun 06 2021 *)
PROG
(PARI) isok(n) = {if ((bigomega(n) == 2) && (omega(n) == 2), my(p = factor(n)[1, 1], q = factor(n)[2, 1]); (q-1) % (p-1) != 0; ); } \\ Michel Marcus, Sep 18 2018
(PARI) list(lim)=my(v=List(), s=sqrtint(lim\=1)); forprime(q=7, lim\5, forprime(p=5, min(min(q-2, s), lim\q), if((q-1)%(p-1), listput(v, p*q)))); Set(v) \\ Charles R Greathouse IV, Apr 14 2020
CROSSREFS
Subsequence of A046388.
Complement of A162730 w.r.t. A006881.
Sequence in context: A335902 A121707 A267999 * A157352 A176255 A355814
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Sep 18 2018
STATUS
approved