login
A319385
Assuming the truth of the Collatz conjecture, let {m, f(m), f(f(m)), ..., 1} be the set where f is the Collatz function. The sequence lists the numbers m such that m/phi(m) + f(m)/phi(f(m)) + f(f(m))/phi(f(f(m))) + ... + 1/phi(1) is an integer, where phi is the Euler totient function A000010.
0
1, 2, 4, 8, 16, 26, 32, 64, 128, 256, 512, 1024, 1664, 2048, 3392, 4096, 8192, 16384, 32768, 65536, 106496, 131072, 262144, 524288, 1048576, 2097152, 4194304, 6815744, 8388608, 16777216, 27918336, 33554432, 67108864, 134217728, 268435456, 436207616, 536870912
OFFSET
1,2
COMMENTS
The corresponding integers are 1, 3, 5, 7, 9, 21, 11, 13, 15, 17, 19, 21, 34, 23, 36, 25, 27, 29, 31, 33, 47, 35, 37, 39, 41, 43, 45, 60, 47, 49, 81, 51, 53, 55, 57, 73, 59, 61, 63, ... Conjecturally, it seems that all odd numbers are present, and the even numbers are rare: 34, 36, 60, ...
We observe that the non-powers of 2 of the sequence: 26, 1664, 3392, 106496, 6815744, 27918336, 436207616, ... are of the form q*2^k with q in the set {13, 53, 213, ...}.
EXAMPLE
26 is in the sequence because the Collatz trajectory is 26 -> 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1, and 26/phi(26) + 13/phi(13) + 40/phi(40) + 20/phi(20) + 10/phi(10) + 5/phi(5) + 16/phi(16) + 8/phi(8) + 4/phi(4) + 2/phi(2) + 1/phi(1) = 26/12 + 13/12 + 40/16 + 20/8 + 10/4 + 5/4 + 16/8 + 8/4 + 4/2 + 2/1 + 1/1 = 21 is an integer.
MAPLE
with(numtheory):nn:=10^6:
for n from 1 to 100000 do:
T:=array(1..1000, [0$1000]):
it:=0:m:=n:k:=0:
for i from 1 to nn while(m<>1) do:
if irem(m, 2)=0
then
k:=k+1:T[k]:=m:m:=m/2:
else
k:=k+1:T[k]:=m:m:=3*m+1:
fi:
od:
k:=k+1:T[k]:=1:
s:=sum(ā€˜T[i]/phi(T[i])ā€™, ā€˜iā€™=1..k):
if s=floor(s)
then
printf (`%d %d \n`, n, s):
else fi:
od:
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 18 2018
STATUS
approved