|
|
A176255
|
|
Numbers of the form 4k-1 with least prime divisor of the form 4m+1.
|
|
8
|
|
|
35, 55, 95, 115, 155, 175, 215, 235, 247, 275, 295, 299, 323, 335, 355, 391, 395, 403, 415, 455, 475, 515, 527, 535, 559, 575, 595, 611, 635, 655, 695, 715, 731, 755, 767, 775, 799, 815, 835, 871, 875, 895, 899, 923, 935, 955, 995, 1003, 1015, 1027, 1055
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
By definition, all terms are composite numbers.
|
|
LINKS
|
|
|
MAPLE
|
A020639 := proc(n) if n = 1 then 1; else min(op(numtheory[factorset](n))) ; end if; end proc:
isA176255 := proc(n) (n mod 4 = 3) and ( A020639(n) mod 4 = 1) ; end proc:
for n from 3 to 1200 by 4 do if isA176255(n) then printf("%d, ", n); end if; end do:
|
|
MATHEMATICA
|
Select[4 Range@ 265 - 1, Mod[#, 4] == 1 &[FactorInteger[#][[1, 1]]] &] (* Michael De Vlieger, Feb 07 2016 *)
|
|
PROG
|
(PARI) isok(n) = ((n % 4) == 3) && ((vecmin(factor(n)[, 1]) % 4) == 1); \\ Michel Marcus, Feb 07 2016
(Magma) [n: n in [1..1500] | (n mod 4 eq 3) and (Min(PrimeFactors(n)) mod 4) eq 1]; // Vincenzo Librandi, Feb 07 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|