OFFSET
1,1
COMMENTS
See comments and references of A176251.
15 partitions of integer 7: 7, 1+6, 2+5, 3+4, 1+1+5, 1+2+4, 1+3+3, 2+2+3, 1+1+1+4, 1+1+2+3, 1+2+2+2, 1+1+1+1+3, 1+1+1+2+2, 1+1+1+1+1+2, 1+1+1+1+1+1+1
partition 2+5 enables no primes
41 compositions (the order matters) of integer 7, which with included zeros enable primes, so this sequence has 41 = prime(13) terms
Prime indices (6 primes, 2 squares, 1 cube)
4=2^2, 14, 18, 36=6^2, 48, 53, 65, 67, 82, 174, 188, 198, 202, 216=6^3, 319, 321, 331, 344, 445, 566, 672, 1245, 1346, 1349, 1367, 1460, 1654, 2374, 2385, 2479, 3268, 9696, 9781, 10546, 10552, 10629, 12246, 26809, 93015, 149709, 733339
EXAMPLE
43 = prime(14), 2nd term
1201111 = prime(93015), 39th term
2011111 = prime(149709), 40th term
11110111 = prime(733339), 41st term
Curious 2221 = prime(331) and 331 itself is 7th term of sequence, 1321 = prime(6^3)
4 palindromic primes: 7 = palprime(2^2), 151 = palprime(2^3), 313 = palprime(11), 11311 = palprime(4!)
CROSSREFS
KEYWORD
base,fini,nonn,uned
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 13 2010
STATUS
approved