login
A379398
Numbers that can be written in exactly three different ways as a sum of at most nine positive third powers.
4
35, 56, 64, 65, 67, 68, 70, 75, 81, 82, 83, 84, 86, 89, 92, 93, 94, 96, 97, 98, 99, 100, 105, 107, 108, 110, 112, 113, 118, 119, 120, 121, 124, 125, 127, 130, 141, 142, 143, 148, 149, 150, 151, 167, 169, 174, 175, 176, 177, 178, 183, 186, 188, 202, 204, 212, 213, 214, 240, 247, 303
OFFSET
1,1
COMMENTS
The 'nine' is not arbitrary. Waring stated that every natural number can be expressed as a sum of at most nine cubes. (Cf. A002804)
EXAMPLE
67 is in the sequence since 1^3+1^3+1^3+4^3 = 2^3+2^3+2^3+2^3+2^3+3^3 = 1^3+1^3+1^3+1^3+1^3+2^3+3^3+3^3.
PROG
(PARI) upto(n) = my(v=vector(n), maxb=sqrtnint(n, 3)); forvec(x=vector(9, i, [0, maxb]), s=sum(i=1, 9, x[i]^3); if(0<s && s<=n, v[s]++); , 1); Vec(select(x->x==3, v, 1)) \\ David A. Corneth, Dec 23 2024
KEYWORD
nonn
AUTHOR
Patrick De Geest, Dec 22 2024
STATUS
approved