login
A379399
Numbers that can be written in exactly four different ways as a sum of at most nine positive third powers.
4
72, 91, 126, 128, 129, 131, 132, 134, 135, 136, 137, 138, 139, 140, 144, 146, 147, 154, 155, 156, 157, 158, 162, 164, 165, 166, 168, 170, 171, 172, 173, 179, 180, 181, 184, 185, 187, 191, 193, 194, 195, 199, 203, 205, 206, 207, 210, 211, 215, 221, 228, 229, 230, 231, 232, 241, 242, 266, 267, 293, 295, 319, 330, 338, 366, 455
OFFSET
1,1
COMMENTS
The 'nine' is not arbitrary. Waring stated that every natural number can be expressed as a sum of at most nine cubes (cf. A002804).
Conjecture: this sequence is finite and a(66) = 455 is the last term. Verified up to 10^8. - Charles R Greathouse IV, Dec 28 2024
EXAMPLE
215 is in the sequence since 1^3+2^3+3^3+3^3+3^3+5^3 = 1^3+1^3+2^3+2^3+2^3+4^3+5^3 = 2^3+2^3+3^3+3^3+3^3+3^3+3^3+4^3 = 1^3+2^3+2^3+2^3+2^3+3^3+3^3+4^3+4^3.
PROG
(PARI) upto(n) = my(v=vector(n), maxb=sqrtnint(n, 3)); forvec(x=vector(9, i, [0, maxb]), s=sum(i=1, 9, x[i]^3); if(0<s && s<=n, v[s]++); , 1); select(x->x==4, v, 1) \\ David A. Corneth, Dec 23 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Patrick De Geest, Dec 23 2024
STATUS
approved