OFFSET
1,1
COMMENTS
The 'nine' is not arbitrary. Waring stated that every natural number can be expressed as a sum of at most nine cubes (cf. A002804).
Conjecture: this sequence is finite and a(66) = 455 is the last term. Verified up to 10^8. - Charles R Greathouse IV, Dec 28 2024
LINKS
Eric Weisstein's World of Mathematics, Waring's Problem.
Wikipedia, Waring's Problem.
EXAMPLE
215 is in the sequence since 1^3+2^3+3^3+3^3+3^3+5^3 = 1^3+1^3+2^3+2^3+2^3+4^3+5^3 = 2^3+2^3+3^3+3^3+3^3+3^3+3^3+4^3 = 1^3+2^3+2^3+2^3+2^3+3^3+3^3+4^3+4^3.
PROG
(PARI) upto(n) = my(v=vector(n), maxb=sqrtnint(n, 3)); forvec(x=vector(9, i, [0, maxb]), s=sum(i=1, 9, x[i]^3); if(0<s && s<=n, v[s]++); , 1); select(x->x==4, v, 1) \\ David A. Corneth, Dec 23 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Patrick De Geest, Dec 23 2024
STATUS
approved