login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355003
a(n) = gcd(A003415(n), A277791(n)), where A003415 is the arithmetic derivative and A277791 is the denominator of sum of reciprocals of proper divisors of n.
3
1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 4, 1, 1, 1, 8, 1, 3, 1, 4, 1, 1, 1, 4, 5, 1, 9, 4, 1, 1, 1, 16, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 3, 1, 1, 16, 7, 5, 1, 4, 1, 27, 1, 4, 1, 1, 1, 4, 1, 1, 3, 32, 1, 1, 1, 4, 1, 1, 1, 12, 1, 1, 5, 4, 1, 1, 1, 16, 27, 1, 1, 4, 1, 1, 1, 4, 1, 3, 1, 4, 1, 1, 1, 16, 1, 7, 3, 5, 1, 1, 1, 4, 1
OFFSET
1,4
LINKS
FORMULA
a(n) = gcd(A003415(n), A277791(n)).
a(p^k) = p^(k-1) for all primes p and exponents k > 0.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A277791(n) = denominator((sigma(n)-1)/n); \\ From A277791
A355003(n) = gcd(A003415(n), A277791(n));
CROSSREFS
Cf. also A355815.
Sequence in context: A128708 A087653 A295666 * A322020 A294895 A285328
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 18 2022
STATUS
approved