login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355819
Dirichlet inverse of A270419, denominator of the rational number obtained when the exponents in prime factorization of n are reinterpreted as alternating binary sums (A065620).
3
1, -1, -1, 0, -1, 1, -1, -1, 0, 1, -1, 0, -1, 1, 1, 2, -1, 0, -1, 0, 1, 1, -1, 1, 0, 1, -2, 0, -1, -1, -1, -8, 1, 1, 1, 0, -1, 1, 1, 1, -1, -1, -1, 0, 0, 1, -1, -2, 0, 0, 1, 0, -1, 2, 1, 1, 1, 1, -1, 0, -1, 1, 0, 12, 1, -1, -1, 0, 1, -1, -1, 0, -1, 1, 0, 0, 1, -1, -1, -2, 4, 1, -1, 0, 1, 1, 1, 1, -1, 0, 1, 0, 1, 1, 1, 8
OFFSET
1,16
COMMENTS
Multiplicative because A270419 is.
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A270419(n/d) * a(d).
PROG
(PARI)
A065620(n, c=1) = sum(i=0, logint(n+!n, 2), if(bittest(n, i), (-1)^c++<<i)); \\ From A065620
A270419(n) = {n=factor(n); n[, 2]=apply(A065620, n[, 2]); denominator(factorback(n)); }; \\ From A270419
memoA355819 = Map();
A355819(n) = if(1==n, 1, my(v); if(mapisdefined(memoA355819, n, &v), v, v = -sumdiv(n, d, if(d<n, A270419(n/d)*A355819(d), 0)); mapput(memoA355819, n, v); (v)));
CROSSREFS
Cf. also A355826.
Sequence in context: A321894 A355824 A355826 * A330262 A098055 A344739
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Jul 19 2022
STATUS
approved