OFFSET
0,7
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..2309
Eric Weisstein's World of Mathematics, Unitary Divisor
FORMULA
a(n) = [x^n] Product_{p|n, p prime, gcd(p, n/p) = 1} 1/(1 - x^p).
a(n) = 0 if n is a powerful number (A001694).
EXAMPLE
a(6) = 2 because 6 has 4 divisors {1, 2, 3, 6} among which 2 are unitary prime divisors {2, 3} therefore we have [3, 3] and [2, 2, 2].
MATHEMATICA
Join[{1}, Table[d = Divisors[n]; Coefficient[Series[Product[1/(1 - Boole[GCD[n/d[[k]], d[[k]]] == 1 && PrimeQ[d[[k]]]] x^d[[k]]), {k, Length[d]}], {x, 0, n}], x, n], {n, 1, 95}]]
PROG
(PARI)
A055231(n) = {my(f=factor(n)); for (k=1, #f~, if (f[k, 2] > 1, f[k, 2] = 0); ); factorback(f); } \\ From A055231
unitary_prime_factors(n) = { my(ufs = factor(A055231(n))); ufs[, 1]~; };
partitions_into(n, parts, from=1) = if(!n, 1, my(k = #parts, s=0); for(i=from, k, if(parts[i]<=n, s += partitions_into(n-parts[i], parts, i))); (s));
A286852(n) = if(n<2, 1-n, partitions_into(n, vecsort(unitary_prime_factors(n), , 4))); \\ Antti Karttunen, Jul 02 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 01 2017
STATUS
approved