The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225244 Number of partitions of n into squarefree divisors of n. 10
 1, 1, 2, 2, 3, 2, 8, 2, 5, 4, 11, 2, 27, 2, 14, 14, 9, 2, 64, 2, 40, 18, 20, 2, 125, 6, 23, 10, 53, 2, 742, 2, 17, 26, 29, 26, 343, 2, 32, 30, 195, 2, 1654, 2, 79, 136, 38, 2, 729, 8, 341, 38, 92, 2, 1000, 38, 265, 42, 47, 2, 14188, 2, 50, 184, 33, 44, 5257, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) <= A018818(n); a(n) = A018818(n) iff n is squarefree: a(A005117(n)) = A018818(A005117(n)); a(A000040(n)) = 2. LINKS Reinhard Zumkeller and Alois P. Heinz, Table of n, a(n) for n = 0..10000 (300 terms from Reinhard Zumkeller) FORMULA a(n) = [x^n] Product_{d|n, mu(d) != 0} 1/(1 - x^d), where mu() is the Moebius function (A008683). - Ilya Gutkovskiy, Jul 26 2017 EXAMPLE a(8) = #{2+2+2+2, 2+2+2+1+1, 2+2+1+1+1+1, 2+6x1, 8x1} = 5; a(9) = #{3+3+3, 3+3+1+1+1, 3+1+1+1+1+1+1, 9x1} = 4; a(10) = #{10, 5+5, 5+2+2+1, 5+2+1+1+1, 5+5x1, 2+2+2+2+2, 2+2+2+2+1+1, 2+2+2+1+1+1+1, 2+2+6x1, 2+8x1, 10x1} = 11; a(11) = #{11, 1+1+1+1+1+1+1+1+1+1+1} = 2; a(12) = #{6+6, 6+3+3, 6+3+2+1, 6+3+1+1+1, 6+2+2+2, 6+2+2+1+1, 6+2+1+1+1+1, 6+6x1, 3+3+3+3, 3+3+3+2+1, 3+3+3+1+1+1, 3+3+2+2+2, 3+3+2+2+1+1, 3+3+2+4x1, 3+3+6x1, 3+2+2+2+2+1, 3+2+2+2+1+1+1, 3+2+2+5x1, 3+2+7x1, 3+8x1, 2+2+2+2+2+2, 2+2+2+2+2+1+1, 2+2+2+2+1+1+1+1, 2+2+2+6x1, 2+2+8x1, 2+10x1, 12x1} = 27; a(13) = #{11, 1+1+1+1+1+1+1+1+1+1+1+1+1} = 2; a(14) = #{14, 7+7, 7+2+2+2+1, 7+2+2+1+1+1, 7+2+5x1, 7+7x1, 7x2, 6x2+1+1, 5x2+1+1+1+1, 4x2+6x1, 2+2+2+8x1, 2+2+10x1, 2+12x1, 14x1} = 14; a(15) = #{15, 5+5+5, 5+5+3+1+1, 5+5+5x1, 5+3+3+3+1, 5+3+3+1+1+1+1, 5+3+7x1, 5+10x1, 3+3+3+3+3, 3+3+3+3+1+1+1, 3+3+3+6x1, 3+3+9x1, 3+12x1, 15x1} = 14. MAPLE with(numtheory): a:= proc(n) local b, l; l:= sort([select(issqrfree, divisors(n))[]]):       b:= proc(m, i) option remember; `if`(m=0 or i=1, 1,             `if`(i<1, 0, b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i))))           end; forget(b):       b(n, nops(l))     end: seq(a(n), n=0..100); # Alois P. Heinz, Feb 05 2014 MATHEMATICA a[0] = 1; a[n_] := Module[{b, l}, l = Select[Divisors[n], SquareFreeQ]; b[m_, i_] := b[m, i] = If[m == 0 || i == 1, 1, If[i < 1, 0, b[m, i - 1] + If[l[[i]] > m, 0, b[m - l[[i]], i]]]]; b[n, Length[l]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 27 2015, after Alois P. Heinz *) PROG (Haskell) a225244 n = p (a206778_row n) n where    p _          0 = 1    p []         _ = 0    p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m CROSSREFS Cf. A206778, A005117, A008966, A225245, A073576. Sequence in context: A117754 A248577 A015999 * A345281 A338319 A280583 Adjacent sequences:  A225241 A225242 A225243 * A225245 A225246 A225247 KEYWORD nonn AUTHOR Reinhard Zumkeller, May 05 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 07:08 EDT 2021. Contains 347554 sequences. (Running on oeis4.)