login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286854
Numbers k such that k == 1 or -1 (mod 6) but k does not divide the numerator of Bernoulli(2*k).
1
55, 253, 275, 385, 605, 715, 935, 1045, 1081, 1265, 1375, 1595, 1705, 1711, 1771, 1925, 2035, 2255, 2365, 2485, 2585, 2695, 2783, 2915, 3025, 3245, 3289, 3355, 3403, 3575, 3685, 3905, 4015, 4235, 4301, 4345, 4565, 4675, 4807, 4895, 5005, 5225, 5335, 5405, 5555
OFFSET
1,1
MAPLE
isa := n -> abs(mods(n, 6)) = 1 and modp(numer(bernoulli(2*n)), n) <> 0:
select(isa, [$1..2255]); # Peter Luschny, Aug 02 2017
MATHEMATICA
Select[Range@9999, 0 != Mod[Numerator@BernoulliB[2 #], #] && MemberQ[{1, 5}, Mod[#, 6]] &]
PROG
(PARI) isok(n) = (((n % 6) == 1) || ((n % 6) == 5)) && (numerator(bernfrac(2*n)) % n); \\ Michel Marcus, Aug 02 2017
CROSSREFS
Cf. A000367, A286853 (1st differences).
Sequence in context: A280888 A158658 A296036 * A020182 A159746 A212408
KEYWORD
nonn
AUTHOR
Bill Gosper, Aug 01 2017
STATUS
approved