OFFSET
1,1
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..210
FORMULA
Empirical (for n>=5): n*(955*n^3 - 8481*n^2 + 21998*n - 14262)*a(n) = 2*(3820*n^4 - 36789*n^3 + 110342*n^2 - 99213*n - 1890)*a(n-1) - 8*(2*n-9)*(955*n^3 - 5616*n^2 + 7901*n + 210)*a(n-2). - Vaclav Kotesovec, Nov 20 2012
Empirical (for n>=4): a(n) = 2^(2*n+5) - 4*(955*n^3 - 3782*n^2 + 3475*n + 30) * C(2*n-7, n-4) / ((n-2)*(n-1)*n). - Vaclav Kotesovec, Nov 20 2012
EXAMPLE
Some solutions for n=3:
0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1
0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0
1 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1
0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0
1 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0
1 0 0 1 1 0 1 1 0 0 0 1 0 1 0 0
0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0
1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 0
MAPLE
#verified first terms (holds for all n<=210).
with(gfun): A212408:= rectoproc({a(3)=1314, a(4)=5769, n*(955*n^3-8481*n^2+21998*n-14262)*a(n) = 2*(3820*n^4-36789*n^3+110342*n^2-99213*n-1890)*a(n-1) - 8*(2*n-9)*(955*n^3-5616*n^2+7901*n+210)*a(n-2)}, a(n), remember): 55, 285, seq(A212408(n), n=3..20); A212408(210); # Vaclav Kotesovec, Nov 20 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 14 2012
STATUS
approved