login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212408
Number of binary arrays of length 2*n+6 with no more than n ones in any length 2n subsequence (=50% duty cycle).
1
55, 285, 1314, 5769, 24322, 100736, 413220, 1685039, 6844362, 27724036, 112072540, 452348578, 1823583124, 7344493104, 29556979016, 118871913787, 477820811258, 1919788147772, 7710323488748, 30956089143902, 124248950086268
OFFSET
1,1
LINKS
FORMULA
Empirical (for n>=5): n*(955*n^3 - 8481*n^2 + 21998*n - 14262)*a(n) = 2*(3820*n^4 - 36789*n^3 + 110342*n^2 - 99213*n - 1890)*a(n-1) - 8*(2*n-9)*(955*n^3 - 5616*n^2 + 7901*n + 210)*a(n-2). - Vaclav Kotesovec, Nov 20 2012
Empirical (for n>=4): a(n) = 2^(2*n+5) - 4*(955*n^3 - 3782*n^2 + 3475*n + 30) * C(2*n-7, n-4) / ((n-2)*(n-1)*n). - Vaclav Kotesovec, Nov 20 2012
EXAMPLE
Some solutions for n=3:
0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1
0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0
1 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1
0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0
1 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0
1 0 0 1 1 0 1 1 0 0 0 1 0 1 0 0
0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0
1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 0
MAPLE
#verified first terms (holds for all n<=210).
with(gfun): A212408:= rectoproc({a(3)=1314, a(4)=5769, n*(955*n^3-8481*n^2+21998*n-14262)*a(n) = 2*(3820*n^4-36789*n^3+110342*n^2-99213*n-1890)*a(n-1) - 8*(2*n-9)*(955*n^3-5616*n^2+7901*n+210)*a(n-2)}, a(n), remember): 55, 285, seq(A212408(n), n=3..20); A212408(210); # Vaclav Kotesovec, Nov 20 2012
CROSSREFS
Row 7 of A212402.
Sequence in context: A286854 A020182 A159746 * A350286 A250092 A330382
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 14 2012
STATUS
approved