login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286850
Number of minimal dominating sets in the 2 X n king graph.
2
2, 4, 6, 16, 20, 52, 80, 176, 296, 592, 1104, 2064, 3936, 7296, 14048, 25984, 49600, 92736, 175872, 330240, 623232, 1175296, 2213632, 4176128, 7863808, 14838784, 27948544, 52707328, 99320832, 187257856, 352940032, 665276416, 1254090752, 2363805696, 4455927808
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, King Graph
Eric Weisstein's World of Mathematics, Minimal Dominating Set
FORMULA
a(n) = 2*a(n-2)+2*a(n-3)+4*a(n-4)-8*a(n-6) for n>6.
G.f.: 2*x*(1 + 2*x + x^2 + 2*x^3 - 4*x^4 - 4*x^5)/(1 - 2*x^2 - 2*x^3 - 4*x^4 + 8*x^6).
MATHEMATICA
Table[RootSum[8 - 4 #1^2 - 2 #1^3 - 2 #1^4 + #1^6 &, 36 #1^n - 36 #1^(2 + n) + 55 #1^(3 + n) - 3 #1^(4 + n) + 32 #1^(5 + n) &]/970, {n, 10}] (* Eric W. Weisstein, Aug 04 2017 *)
LinearRecurrence[{0, 2, 2, 4, 0, -8}, {2, 4, 6, 16, 20, 52}, 20] (* Eric W. Weisstein, Aug 03 2017 *)
CoefficientList[Series[-((2 (-1 - 2 x - x^2 - 2 x^3 + 4 x^4 + 4 x^5))/(1 - 2 x^2 - 2 x^3 - 4 x^4 + 8 x^6)), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 03 2017 *)
PROG
(PARI)
Vec(2*(1+2*x+x^2+2*x^3-4*x^4-4*x^5)/(1-2*x^2-2*x^3-4*x^4+8*x^6)+O(x^40))
CROSSREFS
Row 2 of A286849.
Sequence in context: A248334 A001774 A053285 * A228119 A078148 A076075
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Aug 01 2017
STATUS
approved