login
A369428
The number of exponents in the prime factorization of n that are squares.
3
0, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 2, 0, 1, 1, 3, 1, 0, 2, 2, 2, 0, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 0, 2, 3, 1, 1, 2, 3, 1, 0, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 2, 2, 2
OFFSET
1,6
COMMENTS
First differs from A125070 at n = 64.
LINKS
FORMULA
Additive with a(p^e) = A010052(e).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B - C), where B is Mertens's constant (A077761) and C = P(2) + Sum_{k>=2} (P(k^2+1) - P(k^2)) = 0.40999077396414387641..., and P(s) is the prime zeta function.
MAPLE
a:= n-> add(`if`(issqr(i[2]), 1, 0), i=ifactors(n)[2]):
seq(a(n), n=1..100); # Alois P. Heinz, Jan 23 2024
MATHEMATICA
f[p_, e_] := If[IntegerQ[Sqrt[e]], 1, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecsum(apply(x -> if(issquare(x), 1, 0), factor(n)[, 2]));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Jan 23 2024
STATUS
approved