login
A369427
The number of unitary divisors of n that are squares of primes.
5
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
OFFSET
1,36
COMMENTS
The number of exponents in the prime factorization of n that are equal to 2.
LINKS
FORMULA
Additive with a(p^e) = 1 if e = 2, and 0 otherwise.
a(n) > 0 if and only if n is in A038109.
a(A061742(n)) = n, and a(k) < n for all k < A061742(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} (1/p^2 - 1/p^3) = A085548 - A085541 = 0.27748478074162196208... .
MATHEMATICA
f[p_, e_] := If[e == 2, 1, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecsum(apply(x -> if(x == 2, 1, 0), factor(n)[, 2]));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Jan 23 2024
STATUS
approved